留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丁坝附近交叉波浪场引起的裂流系统实验研究

闫圣 邹志利 徐杰 常承书 尤再进 王东

闫圣,邹志利,徐杰,等. 丁坝附近交叉波浪场引起的裂流系统实验研究[J]. 海洋学报,2023,45(10):135–146 doi: 10.12284/hyxb2023149
引用本文: 闫圣,邹志利,徐杰,等. 丁坝附近交叉波浪场引起的裂流系统实验研究[J]. 海洋学报,2023,45(10):135–146 doi: 10.12284/hyxb2023149
Yan Sheng,Zou Zhili,Xu Jie, et al. Experimental studies of rip current systems induced by the intersecting waves near a groin[J]. Haiyang Xuebao,2023, 45(10):135–146 doi: 10.12284/hyxb2023149
Citation: Yan Sheng,Zou Zhili,Xu Jie, et al. Experimental studies of rip current systems induced by the intersecting waves near a groin[J]. Haiyang Xuebao,2023, 45(10):135–146 doi: 10.12284/hyxb2023149

丁坝附近交叉波浪场引起的裂流系统实验研究

doi: 10.12284/hyxb2023149
基金项目: 国家重点研发计划项目(2021YFB2601100);国家自然科学基金项目(52201308,51879033);中国博士后科学基金项目(2022M720632);中国辐射防护研究院平台开放基金项目;中央高校基本科研业务费项目(3132023360,3132023167)。
详细信息
    作者简介:

    闫圣(1987−),男,辽宁省营口市人,博士后,主要从事海岸水动力学研究。E-mail:yansheng20210039@dlmu.edu.cn

    通讯作者:

    邹志利(1957−),男,教授,主要从事海岸水动力和海岸动力地貌研究。E-mail:zlzou@dlut.edu.cn

  • 中图分类号: P751

Experimental studies of rip current systems induced by the intersecting waves near a groin

  • 摘要: 裂流是狭窄而集中的离岸方向水流,对海岸水底变形、物质输移和游泳者安全有重要影响。波浪在垂直海岸建筑物(如丁坝、航道挡沙堤等)上产生的反射会导致沿岸驻波,在驻波节点区域由于波高很小会产生裂流,这是海岸出现裂流原因之一。本研究通过物理模型实验给出了沙坝海岸上建筑物附近裂流系统不同于开敞水域交叉波裂流系统的特征,讨论了波高沿岸变化对裂流系统的各裂流单元流量平衡的影响。结果表明:建筑物的存在引起了沙坝和海岸之间背离建筑物方向的沿岸流动,这导致了裂流系统中各裂流单元之间存在着流量的交换,对各单元裂流流量大小和分布产生了直接影响;各单元侧向流流量对裂流的贡献依赖于单元距建筑物的距离。
  • 图  1  沙坝海岸平面图(a)、剖面图(b)和丁坝附近交叉波浪场照片(c)

    Fig.  1  Plan view of the barred beach (a), bottom profile the barred beach (b) and the photo of intersecting waves near the groin (c)

    图  2  浪高仪测点位置

    Fig.  2  Wave gauge sampling locations

    图  3  流速仪测点(×)位置

    Fig.  3  ADV sampling locations (×)

    图  4  开敞水域交叉波浪场的波高(a)、平均波面升高(b)和裂流系统流场(箭头矢量)(规则波,T = 1.5 s,Hi = 4 cm)

    Fig.  4  The wave height (a) and mean wave surface elevation (b) of the intersecting waves and the velocity field (arrow vector) of rip current systems on an open coast (regular waves with T = 1.5 s and Hi = 4 cm)

    图  5  节腹点处波高(a)和增减水(b)(波况RH2)

    Fig.  5  Wave heights (a) and wave set-up (b) at nodes and antinodes for Case RH2

    图  6  测量波高分布(a)和时均流场(b)(波况RH2)

    Fig.  6  The measured wave height (a) contours and mean flow fields (b) for Case RH2

    图  7  平均波面升高测量结果(a)和x = 2.5 m处平均水面沿岸方向的变化(b)(波况RH2)

    ○:测量值; —:插值后的曲线

    Fig.  7  The measured mean wave surface elevation (a) and the alongshore variations of mean water level (b) at x = 2.5 m for Case RH2

    ○: Measured data; —: interpolated curves

    图  8  垂直岸测量断面测量(圆点)和计算(实线)沿岸方向流速V剖面(波况RH2)

    Fig.  8  The measured (circles) and calculated (lines) profiles of alongshore current V along the cross-shore sections (Case RH2)

    图  9  坝顶波高Hbar(a)和破碎点处波高Hb(b)沿岸变化(波况RH2)

    ○:测量值; —:插值后的曲线。b中也标出了各节、腹点测量的破碎点位置xb

    Fig.  9  The alongshore variation of wave height at bar crest (a) and maximum wave height at breaking point (b) (Case RH2)

    ○: Measured data; —: interpolated curves. The locations of breaking point xb at the node and anti-node lines are also given in b

    图  10  Stokes质量输移流单宽流量qs (a)和水滚单宽流量qr(b)沿岸变化(波况RH2)

    —:通过水槽实验得到的计算式;---:以前研究中通常采用的计算式[26]

    Fig.  10  The alongshore variations of Stokes drift flux qs (a) and surface roller volume flux qr (b) (Case RH2)

    —: The expressions from the experiment;---: the usually used expressions[26]

    图  11  各裂流单元上流量成分直方图(波况RH2)

    Qrip:裂流流量;Qon:向岸环流流量;Ql:侧向流流量;Qr:水滚流量;Qs:Stokes质量输移流流量

    Fig.  11  The histogram of flow transport for each rip current unit (Case RH2)

    Qrip: rip current transport; Qon: onshore Eulerian transport; Ql: lateral current transport; Qr: surface roller transport; Qs: Stokes mass transport

    图  12  各单元上坝顶处流入单元流量和裂流流量之比(波况RH2)

    Fig.  12  The ratio of the onshore transport on the bar crest to that of rip current (Case RH2)

    图  13  各单元坝顶流入单元的流量(a)、侧向流流量(b)与裂流流量之比随波高的变化

    Fig.  13  The ratio of the transports into the units (a) on the bar crest and lateral transport (b) to rip current transport for each unit vs. incident wave height

    表  1  实验波况

    Tab.  1  Wave parameters of experiment

    波况周期T /s入射波高Hi /cm
    RH11.52.61
    RH21.54.16
    RH31.55.87
    下载: 导出CSV
  • [1] Castelle B, Scott T, Brander R W, et al. Rip current types, circulation and hazard[J]. Earth-Science Reviews, 2016, 163: 1−21. doi: 10.1016/j.earscirev.2016.09.008
    [2] McCarroll R J, Brander R W, Turner I L, et al. Lagrangian observations of circulation on an embayed beach with headland rip currents[J]. Marine Geology, 2014, 355: 173−188. doi: 10.1016/j.margeo.2014.05.020
    [3] MacMahan J H, Thornton E B, Reniers A J H M. Rip current review[J]. Coastal Engineering, 2006, 53(2/3): 191−208.
    [4] Brewster B C, Gould R. Comment on “Rip current related drowning deaths and rescues in Australia 2004−2011” by Brighton et al. (2013)[J]. Natural Hazards and Earth System Sciences, 2014, 14(8): 2203−2204. doi: 10.5194/nhess-14-2203-2014
    [5] Short A D, Hogan C L. Rip currents and beach hazards: their impact on public safety and implications for coastal management[J]. Journal of Coastal Research, 1994(12): 197−209.
    [6] Woodward E, Beaumont E, Russell P, et al. Analysis of rip current incidents and victim demographics in the UK[J]. Journal of Coastal Research, 2013, 65(10065): 850−855.
    [7] Gallop S L, Bryan K R, Coco G, et al. Storm-driven changes in rip channel patterns on an embayed beach[J]. Geomorphology, 2011, 127(3/4): 179−188.
    [8] Thornton E B, MacMahan J, Sallenger Jr A H. Rip currents, mega-cusps, and eroding dunes[J]. Marine Geology, 2007, 240(1/4): 151−167.
    [9] Loureiro C, Ferreira Ó, Cooper J A G. Extreme erosion on high-energy embayed beaches: influence of megarips and storm grouping[J]. Geomorphology, 2012, 139−140: 155−171. doi: 10.1016/j.geomorph.2011.10.013
    [10] Dalrymple R A, Lanan G A. Beach cusps formed by intersecting waves[J]. GSA Bulletin, 1976, 87(1): 57−60. doi: 10.1130/0016-7606(1976)87<57:BCFBIW>2.0.CO;2
    [11] Dalrymple R A. A mechanism for rip current generation on an open coast[J]. Journal of Geophysical Research, 1975, 80(24): 3485−3487. doi: 10.1029/JC080i024p03485
    [12] Wei Zhangping, Dalrymple R A, Xu Munan, et al. Short-crested waves in the surf zone[J]. Journal of Geophysical Research: Oceans, 2017, 122(5): 4143−4162. doi: 10.1002/2016JC012485
    [13] Kirby J T, Derakhti M. Short-crested wave breaking[J]. European Journal of Mechanics-B/Fluids, 2019, 73: 100−111. doi: 10.1016/j.euromechflu.2017.11.001
    [14] Choi J, Roh M. A laboratory experiment of rip currents between the ends of breaking wave crests[J]. Coastal Engineering, 2021, 164: 103812. doi: 10.1016/j.coastaleng.2020.103812
    [15] Shin C H, Noh H K, Yoon S B, et al. Understanding of rip current generation mechanism at Haeundae Beach of Korea: honeycomb waves[J]. Journal of Coastal Research, 2014, 72(S1): 11−15.
    [16] Long J W, Özkan-Haller H T. Offshore controls on nearshore rip currents[J]. Journal of Geophysical Research: Oceans, 2005, 110(C12): C12007. doi: 10.1029/2005JC003018
    [17] Zhang Yu, Shi Fengyan, Kirby J T, et al. Phase-resolved modeling of wave interference and its effects on nearshore circulation in a large ebb shoal-beach system[J]. Journal of Geophysical Research: Oceans, 2022, 127(10): e2022JC018623. doi: 10.1029/2022JC018623
    [18] 王彦, 邹志利. 平直沙坝海岸叠加波浪的裂流试验[J]. 水科学进展, 2023, 26(1): 123−129. doi: 10.14042/j.cnki.32.1309.2015.01.016

    Wang Yan, Zou Zhili. Experimental study of rip currents by intersecting wave on barred beach[J]. Advances in Water Science, 2023, 26(1): 123−129. doi: 10.14042/j.cnki.32.1309.2015.01.016
    [19] Islam M R, Zhu D Z. Kernel density-based algorithm for despiking ADV data[J]. Journal of Hydraulic Engineering, 2013, 139(7): 785−793. doi: 10.1061/(ASCE)HY.1943-7900.0000734
    [20] Bruneau N, Bonneton P, Castelle B, et al. Modeling rip current circulations and vorticity in a high-energy mesotidal-macrotidal environment[J]. Journal of Geophysical Research: Oceans, 2011, 116(C7): C07026.
    [21] Scott T, Austin M, Masselink G, et al. Dynamics of rip currents associated with groynes——field measurements, modelling and implications for beach safety[J]. Coastal Engineering, 2016, 107: 53−69. doi: 10.1016/j.coastaleng.2015.09.013
    [22] Aagaard T, Greenwood B, Nielsen J. Mean currents and sediment transport in a rip channel[J]. Marine Geology, 1997, 140(1/2): 25−45.
    [23] Brander R W, Short A D. Morphodynamics of a large-scale rip current system at Muriwai Beach, New Zealand[J]. Marine Geology, 2000, 165(1/4): 27−39.
    [24] Haller M C, Dalrymple R A, Svendsen I A. Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research: Oceans, 2002, 107(C6): 14-1−14-21.
    [25] 闫圣. 缓坡海岸沿岸流和边界控制裂流系统特征研究[D]. 大连: 大连理工大学, 2021.

    Yan Sheng. Study on the features of longshore currents on mild beaches and boundary rip current systems[D]. Dalian: Dalian University of Technology, 2021.
    [26] MacMahan J H, Thornton E B, Stanton T P, et al. RIPEX: observations of a rip current system[J]. Marine Geology, 2005, 218(1/4): 113−134.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  106
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-10
  • 修回日期:  2023-06-10
  • 网络出版日期:  2023-10-10
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回