Study of indicators and methods for identifying typhoon deposits in the muddy belt of inner shelf of the East China Sea
-
摘要: 台风是当今人类社会面临的全球性重大环境灾害问题之一,但由于台风器测年限较短,限制了对台风长期演化机制的研究。沉积记录成为拓展台风记录时间跨度的重要载体,其中台风沉积的有效辨识是重要基础。尽管许多研究试图基于各种指标和方法来重建长时间尺度的台风活动,但目前仍缺少对台风沉积辨识指标与方法有效性的评估。本文以高分辨率的东海内陆架泥质区ZM02孔为载体,采用放射性同位素210Pb和137Cs定年法确定沉积物的年代序列。耦合器测记录和沉积记录,分析器测时期台风强度和频率与台风沉积敏感指标(如砂含量和D90)之间的对应关系,以期探讨台风沉积辨识指标和方法的有效性。结果显示,ZM02孔的平均沉积速率为0.97 cm/a,其上部4.5~100 cm的沉积年代为1917−2011年。砂含量和D90均可作为东海内陆架泥质区台风沉积辨识的有效指标,阈值法的识别效果最好且稳定性高。砂含量可能是反映浙江海岸台风强度变化的潜在指标,而D90则可能蕴含台风频率信息。这些认识有助于更准确地利用沉积记录去拓展台风记录的时间跨度,也有助于提高从沉积记录解译环境信息的能力。Abstract: Typhoons are one of the major global environmental disasters, and their variability is of great concern to modern society. However, the variability of typhoon activity and its climate drivers on centennial-millennial scales are less clear due to the lack of atmospheric instrumental records before the mid-19th century. Coastal sedimentary archives provide a means to extend our knowledge of typhoon dynamics, of which the effective identification of typhoon event layers is an important foundation. Although many studies have attempted to reconstruct typhoon activity on long time scales using various indicators and methods, there is still a lack of evaluation of the effectiveness of these indicators and methods for the identification of typhoon event layer. In this study, a high-resolution sedimentary record (Core ZM02) from the muddy belt of inner shelf of the East China Sea was used, and its dating framework was determined using 210Pb and 137Cs dating methods. The instrumental and sedimentary records were then coupled to analyze the correspondence between typhoon intensity and frequency and sensitivity indicators of typhoon deposits (i.e., sand content and D90 in this study). The results show that the upper 4.5−100 cm of the core dates between 1917 and 2011 AD at a sedimentation rate of 0.97 cm/a. Among the three technical solutions, the threshold method was found to have the best identification and highest stability. Both sand content and D90 were found to be effective indicators for the identification of typhoon deposits in the study area. Sand content may be a potential indicator of typhoon intensity variation along the Zhejiang coast, and D90 contains information on typhoon frequency. The knowledge obtained here will not only contribute to the more accurate use of the sedimentary record to extend the time span of the typhoon record, but also to improve the ability to decipher information from the sedimentary record.
-
图 6 通过粒度参数峰值−地化法D90(a)和砂含量(b)识别的台风层序
深灰色横线代表由锆石组成的台风沉积,浅灰色横线代表由非锆石组成的台风沉积
Fig. 6 Typhoon event layer identified by D90 (a) and sand content (b) using peaks of grain size parameters-geochemical method
The dark gray horizontal lines represent typhoon deposits composed of zircons and the light gray horizontal lines represent typhoon deposits composed of non-zircons
图 8 1980−2011年影响浙江沿海的台风频数和强度与6种方法的识别结果对比
灰色横线为1980−2011年影响浙江沿海的台风频数和最大风速的平均值;紫色和粉色虚线分别为D90和砂含量阈值法识别的台风事件层期间影响浙江沿海的台风频数和最大风速的平均值
Fig. 8 Comparison of the frequency and intensity of typhoons affecting the Zhejiang coast with the identification results of the six methods from 1980 to 2011
The gray horizontal lines represent the average values of typhoon frequency and maximum wind speed affecting the Zhejiang coast from 1980 to 2011; the purple and pink horizontal lines represent the average values of typhoon frequency and maximum wind speed for the typhoon event layer identified by the threshold method of D90 and sand content, respectively
表 1 基于6种方法的台风沉积的识别结果
Tab. 1 Identification results of typhoon event layers based on six methods
技术方案 敏感指标 0~100 cm识别台风事件层 1980−2011年期间识别台风事件层 1980−2011年期间识别效率/% 粒度参数峰值−地化法 D90 23 8 26.7 砂含量 18 5 16.7 ROC法 D90 34 7 23.3 砂含量 20 2 6.7 阀值法 D90 32 9 30.0 砂含量 31 9 30.0 -
[1] Peduzzi P, Chatenoux B, Dao H, et al. Global trends in tropical cyclone risk[J]. Nature Climate Change, 2012, 2(4): 289−294. doi: 10.1038/nclimate1410 [2] Brown S, Nicholls R J, Hanson S, et al. Shifting perspectives on coastal impacts and adaptation[J]. Nature Climate Change, 2014, 4(9): 752−755. doi: 10.1038/nclimate2344 [3] Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051): 686−688. doi: 10.1038/nature03906 [4] Bhatia K T, Vecchi G A, Knutson T R, et al. Recent increases in tropical cyclone intensification rates[J]. Nature Communications, 2019, 10(1): 635. doi: 10.1038/s41467-019-08471-z [5] Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742): 1844−1846. doi: 10.1126/science.1116448 [6] Mei Wei, Xie Shangping, Primeau F, et al. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures[J]. Science Advances, 2015, 1(4): e1500014. doi: 10.1126/sciadv.1500014 [7] Landsea C W, Harper B A, Hoarau K, et al. Can we detect trends in extreme tropical cyclones?[J]. Science, 2006, 313(5786): 452−454. doi: 10.1126/science.1128448 [8] Knutson T, Camargo S J, Chan J C L, et al. Tropical cyclones and climate change assessment: Part I: detection and attribution[J]. Bulletin of the American Meteorological Society, 2019, 100(10): 1987−2007. doi: 10.1175/BAMS-D-18-0189.1 [9] Sobel A H, Camargo S J, Hall T M, et al. Human influence on tropical cyclone intensity[J]. Science, 2016, 353(6296): 242−246. doi: 10.1126/science.aaf6574 [10] Chan J C L. Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”[J]. Science, 2006, 311(5768): 1713. [11] Zhao Jiuwei, Zhan Ruifen, Wang Yuqing, et al. Untangling impacts of global warming and Interdecadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track density[J]. Science Advances, 2020, 6(41): eaba6813. doi: 10.1126/sciadv.aba6813 [12] Liu K B. Paleotempestology: principle, methods, and examples from Gulf Coast lake sediments[M]//Murnane R J, Liu K. Hurricanes and Typhoons: Past, Present, and Future. New York: Columbia University Press, 2004: 13−57. [13] Donnelly J P, Woodruff J D. Intense hurricane activity over the past 5, 000 years controlled by El Niño and the West African monsoon[J]. Nature, 2007, 447(7143): 465−468. doi: 10.1038/nature05834 [14] 廖淦标, 范代读. 全球变暖是否导致台风增强: 古风暴学研究进展与启示[J]. 科学通报, 2008, 53(19): 2907−2922.Liao Ganbiao Fan Daidu. Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology[J]. Chinese Science Bulletin, 2008, 53(19): 2907−2922. [15] 田翠翠, 余克服. 古风暴研究进展[J]. 海洋地质与第四纪地质, 2011, 31(4): 171−177.Tian Cuicui, Yu Kefu. Advances in the study of paleotempestology[J]. Marine Geology & Quaternary Geology, 2011, 31(4): 171−177. [16] 高抒, 贾建军, 杨阳, 等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报, 2019, 41(10): 141−160.Gao Shu, Jia Jianjun, Yang Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Haiyang Xuebao, 2019, 41(10): 141−160. [17] Yang Yang, Piper D J W, Normandeau A, et al. A late Holocene shift of typhoon activity recorded by coastal sedimentary archives in eastern China[J]. Sedimentology, 2022, 69(2): 954−969. doi: 10.1111/sed.12934 [18] Støren E N, Dahl S O, Nesje A, et al. Identifying the sedimentary imprint of high-frequency Holocene river floods in lake sediments: development and application of a new method[J]. Quaternary Science Reviews, 2010, 29(23/24): 3021−3033. [19] 杨照祥, 薛成凤, 杨阳, 等. 百年尺度东海内陆架风暴事件重建: 器测记录与沉积记录耦合[J]. 海洋学报, 2020, 42(7): 119−129.Yang Zhaoxiang, Xue Chengfeng, Yang Yang, et al. A 100-year reconstruction of typhoon events on the inner shelf of the East China Sea: coupling of meteorological observations and sedimentary records[J]. Haiyang Xuebao, 2020, 42(7): 119−129. [20] Lane P, Donnelly J P, Woodruff J D, et al. A decadally-resolved paleohurricane record archived in the late Holocene sediments of a Florida sinkhole[J]. Marine Geology, 2011, 287(1/4): 14−30. [21] Zhou Xin, Liu Zhonghui, Yan Qing, et al. Enhanced tropical cyclone intensity in the western North Pacific during warm periods over the last two millennia[J]. Geophysical Research Letters, 2019, 46(15): 9145−9153. doi: 10.1029/2019GL083504 [22] Tian Yuan, Fan Dejiang, Zhang Xilin, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology, 2019, 410: 109−121. doi: 10.1016/j.margeo.2018.12.010 [23] Gao Shu, Wang Dandan, Yang Yang, et al. Holocene sedimentary systems on a broad continental shelf with abundant river input: process-product relationships[J]. Geological Society, London, Special Publications, 2016, 429(1): 223−259. doi: 10.1144/SP429.4 [24] 汪亚平, 贾建军, 杨阳, 等. 长江三角洲蓝图重绘的基础科学问题: 进展与未来研究[J]. 海洋科学, 2019, 10(10): 1−12.Wang Yaping, Jia Jianjun, Yang Yang, et al. Fundamental scientific issues for the Changjiang River Delta associated with the new blueprint of future development: overview and prospect[J]. Marine Sciences, 2019, 10(10): 1−12. [25] Gao Jianhua, Shi Yong, Sheng Hui, et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations[J]. Marine Geology, 2019, 414: 1−17. doi: 10.1016/j.margeo.2019.05.003 [26] Liu Xiting, Li Anchun, Dong Jiang, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 2018, 151: 1−15. doi: 10.1016/j.jseaes.2017.10.017 [27] 王翠, 郭晓峰, 方婧, 等. 闽浙沿岸流扩展范围的季节特征及其对典型海湾的影响[J]. 应用海洋学学报, 2018, 37(1): 1−8. doi: 10.3969/J.ISSN.2095-4972.2018.01.001Wang Cui, Guo Xiaofeng, Fang Jing, et al. Characteristics of seasonal spatial expansion of Fujian and Zhejiang Coastal Current and their bay effects[J]. Journal of Applied Oceanography, 2018, 37(1): 1−8. doi: 10.3969/J.ISSN.2095-4972.2018.01.001 [28] Yang Yang, Xu Min, Jia Jianjun, et al. Human-induced asynchronous sedimentary records between the north and south of the Changjiang distal mud belt since 2005 CE[J]. Estuarine, Coastal and Shelf Science, 2021, 262: 107578. doi: 10.1016/j.ecss.2021.107578 [29] Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1 [30] Lu Xiaoqin, Yu Hui, Ying Ming, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690−699. doi: 10.1007/s00376-020-0211-7 [31] Xu Chaoran, Yang Yang, Zhang Fan, et al. Spatial-temporal distribution of tropical cyclone activity on the eastern sea area of China since the late 1940s[J]. Estuarine, Coastal and Shelf Science, 2022, 277: 108067. doi: 10.1016/j.ecss.2022.108067 [32] 吴兰军, 黎刚. XRF岩心扫描估算海洋沉积物有机碳含量的适用性[J]. 热带海洋学报, 2022, 41(2): 112−120.Wu Lanjun, Li Gang. The estimation of organic contents in marine sediments based on bromine intensity by the XRF scanner[J]. Journal of Tropical Oceanography, 2022, 41(2): 112−120. [33] 成艾颖, 余俊清, 张丽莎, 等. XRF岩芯扫描分析方法及其在湖泊沉积研究中的应用[J]. 盐湖研究, 2010, 18(2): 7−13.Cheng Aiying, Yu Junqing, Zhang Lisha, et al. XRF core scanning and applications on lake sediments[J]. Journal of Salt Lake Research, 2010, 18(2): 7−13. [34] Hennekam R, de Lange G. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records[J]. Limnology and Oceanography: Methods, 2012, 10(12): 991−1003. doi: 10.4319/lom.2012.10.991 [35] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques, in Sedimentology. Oxford: Blackwell, 1988: 63−85. [36] Appleby P G, Oldfieldz F. The assessment of 210Pb data from sites with varying sediment accumulation rates[J]. Hydrobiologia, 1983, 103(1): 29−35. doi: 10.1007/BF00028424 [37] 曾理, 吴丰昌, 万国江, 等. 中国地区湖泊沉积物中137Cs分布特征和环境意义[J]. 湖泊科学, 2009, 21(1): 1−9. doi: 10.3321/j.issn:1003-5427.2009.01.001Zeng Li, Wu Fengchang, Wan Guojiang, et al. The distribution characteristic and environmental significance of Cesium-137 deposit profile in Chinese lacustrine sediment[J]. Journal of Lake Sciences, 2009, 21(1): 1−9. doi: 10.3321/j.issn:1003-5427.2009.01.001 [38] 万国江. 现代沉积年分辨的137Cs计年──以云南洱海和贵州红枫湖为例[J]. 第四纪研究, 1999(1): 73−80.Wan Guojiang. 137Cs dating by annual distinguish for recent sedimentation: samples from Erhai Lake and Hongfeng Lake[J]. Quaternary Sciences, 1999(1): 73−80. [39] 夏威岚, 薛滨. 吉林小龙湾沉积速率的210Pb和137Cs年代学方法测定[J]. 第四纪研究, 2004, 24(1): 124−125.Xia Weilan, Xue Bin. The 210Pb and 137Cs chronological meansurement on sedimentation rate of Xiaolongwan, Jiling[J]. Quaternary Sciences, 2004, 24(1): 124−125. [40] Yang Yang, Piper D J W, Xu Min, et al. Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age[J]. Nature Communications, 2022, 13(1): 1712. doi: 10.1038/s41467-022-29386-2 [41] Yang Yang, Zhou Liang, Normandeau A, et al. Exploring records of typhoon variability in eastern China over the past 2 000 years[J]. GSA Bulletin, 2020, 132(11/12): 2243−2252. [42] Ercolani C, Muller J, Collins J, et al. Intense Southwest Florida hurricane landfalls over the past 1 000 years[J]. Quaternary Science Reviews, 2015, 126: 17−25. doi: 10.1016/j.quascirev.2015.08.008 [43] Wallace E J, Donnelly J P, van Hengstum P J, et al. 1, 050 years of hurricane strikes on Long Island in the Bahamas[J]. Paleoceanography and Paleoclimatology, 2021, 36(3): e2020PA004156. [44] 刘升发, 石学法, 刘焱光, 等. 东海内陆架泥质区沉积速率[J]. 海洋地质与第四纪地质, 2009, 29(6): 1−7.Liu Shengfa, Shi Xuefa, Liu Yanguang, et al. Sedimentation rate of mud area in the East China Sea inner continental shelf[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 1−7. [45] Scheffler K, Buehmann D, Schwark L. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies—Response to climate evolution and sedimentary environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 184−203. [46] 赵一阳, 喻德科. 黄海沉积物地球化学分析[J]. 海洋与湖沼, 1983(5): 432−446.Zhao Yiyang, Yu Deke. Geochemical analysis of the sediments of the Huanghai Sea[J]. Oceanologia et Limnologia Sinica, 1983(5): 432−446. [47] 高文华. 南黄海内陆架沉积物扩散过程的示踪方法[D]. 南京: 南京大学, 2015.Gao Wenhua. Sediment dispersal processes on the southern Yellow Sea continental shelf: tracer methods[D]. Nanjing: Nanjing University, 2015. [48] 韩瑞. 浑善达克沙地全新世气候变化研究[D]. 太原: 山西大学, 2020.Han Rui. Climate change in Otindag sandy land during the Holocene[D]. Taiyuan: Shanxi University, 2020. [49] Karageorgis A P, Kaberi H, Price N B, et al. Chemical composition of short sediment cores from Thermaikos Gulf (Eastern Mediterranean): sediment accumulation rates, trawling and winnowing effects[J]. Continental Shelf Research, 2005, 25(19/20): 2456−2475. [50] Mei Wei, Xie Shangping. Intensification of landfalling typhoons over the Northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792 [51] 石蓉蓉, 雷媛, 王东法, 等. 1949−2007年影响浙江热带气旋灾情分析及评估研究[J]. 科技通报, 2008, 24(5): 612−616. doi: 10.3969/j.issn.1001-7119.2008.05.005Shi Rongrong, Lei Yuan, Wang Dongfa, et al. Analysis and assessment of TC disaster influencing Zhejiang Province from 1949 to 2007[J]. Bulletin of Science and Technology, 2008, 24(5): 612−616. doi: 10.3969/j.issn.1001-7119.2008.05.005 [52] 朱业, 丁骏, 卢美, 等. 1949−2009年登陆和影响浙江的热带气旋分析[J]. 海洋预报, 2012, 29(2): 8−13. doi: 10.11737/j.issn.1003-0239.2012.02.002Zhu Ye, Ding Jun, Lu Mei, et al. Analysis of the tropical cyclones landing in Zhejiang Province during 1949−2009[J]. Marine Forecasts, 2012, 29(2): 8−13. doi: 10.11737/j.issn.1003-0239.2012.02.002