Reproductive regulation of fruitless gene in brine shrimp Artemia franciscana
-
摘要: fruitless (fru)是在昆虫与甲壳动物求偶、交配行为以及生殖发育过程中发挥关键作用的基因。卤虫不仅是水产育苗的重要开口饲料,而且是生物学研究的重要实验生物。本实验通过对卤虫Artemia franciscana转录组的筛选,获得了fru基因的开放阅读框(ORF)并进行生物信息学分析,利用qPCR技术研究了它在卤虫生殖腺发育的不同阶段的表达情况,最后利用RNAi显微注射技术,深入探索了它的功能。经过生物信息学分析,fru基因的ORF长度为1 215 bp,其中包含了404个氨基酸,其分子量和等电点分别为45.19 kDa和5.28,属于酸性亲水性蛋白,且不含信号肽和跨膜结构;结构域预测显示fru存在BTB_POZ和HTH两个结构域,二级结构主要由α-螺旋和无规则卷组成,三级结构与其对应。qPCR结果显示,fru基因的表达量在卵囊的晚期胚胎中表现出明显的增加趋势,其表达量显著高于其他发育阶段(P < 0.01);而在精巢的未成熟期,fru基因的表达量也有所增加,其表达量显著高于成熟早期、中期和晚期(P < 0.01)。经过RNA干扰,我们发现fru基因的表达量有了显著的下降(P < 0.01),并且经过受到干扰的雌虫后代都为休眠卵。这表明fru基因对于A. franciscana的生殖和发育有着重要的影响,甚至可能是影响卤虫繁殖方式的关键因素。通过本次研究,我们获得了关于fru基因在卤虫生殖发育中的作用及其相关分子机制的重要信息,可以帮助我们更好地理解这一重要的生物学过程。Abstract: fruitless (fru) gene plays an important role in courtship, mating behavior and reproductive development of insectsand crustaceans. Artemia is not only the crucial live food in fish and crustacean larviculture, but also an ideal experimental organism for biological study. In this experiment, the open reading frame (ORF) of fru gene was obtained from the transcriptome of Artemia franciscana and analyzed bioinformatically. qPCR was used to study the expression characteristics of this gene at different stages of gonad development in the Artemia, and its function was explored by RNAi microinjection. Bioinformatics analysis showed that the ORF length of fru gene was 1 215 bp, which contains 404 amino acids, while its molecular weight and isoelectric point were 45.19 kDa and 5.28, and it was an acidic hydrophilic protein with no signal peptide or transmembrane structure; structural domain prediction showed that there are two structural domains of fru, BTB_POZ and HTH. The secondary structure is dominated by α-helix and irregular coil, and the tertiary structure corresponds to it. The qPCR results showed that the expression of fru gene showed a significant increase in late embryos stage, and its expression was significantly higher than that of early oocyte, later oocyte and early embryo stages in the ovary (P < 0.01); while the expression of fru gene also increased in immature stage of the testis, and its expression was significantly higher than that of early, middle and late maturation stages (P < 0.01). After RNA interference, we found that there was a significant decrease in the expression of the fru gene (P < 0.01), and all the offspring produced were cysts. This suggests that the fru gene has an important effect on reproduction and development of A. franciscana, and may be a key factor influencing the reproductive mode of Artemia. Through this study, we obtained important information about the role of fru gene in the reproductive development of Artemia and their related molecular mechanisms, which can help us better understand this important biological process.
-
Key words:
- Artemia /
- fru gene /
- gonad /
- gene expression character /
- RNAi /
- reproductive development
-
图 2 卤虫fru基因编码蛋白生物信息学分析
a. 亲水性分析;b. 信号肽分析;c. fru蛋白跨膜结构预测;d. fru蛋白保守结构域预测
Fig. 2 Bioinformatics analysis of the protein encoded by the fru gene of Artemia franciscana
a. Hydrophilic analysis; b. signal peptide analysis; c. prediction of fru protein transmembrane structure; d. prediction of fru protein conserved domain
图 4 卤虫fru基因生殖腺不同发育时期的表达结果
相同字母表示差异不显著(P > 0.05);不同字母表示差异极显著(P < 0.01)
Fig. 4 Expression results of fru gene in gonads of Artemia franciscana at different developmental stages
The same letter indicate the difference is not significant (P > 0.05); different letters indicate significant differences (P < 0.01)
表 1 fru基因的引物信息
Tab. 1 The primer information of fru gene
引物名称 序列(5'—3') 退火温度/°C 片段大小/bp 用途 fru-F1 ACTTTGGTTCAACTTCTTA 55 1 117 基因扩增 fru-R1 TTCTTGTCATTCCATCAT fru-F TGTTTCCAAGTGAGCCATGC 58 105 qPCR fru-R TTGCTGAGTACTGCTGACCT GAPDH-F GGTCGTGACTTGACGGACTATCT 57 120 内参基因 GAPDH-R AGCGGTTGCCATTTCTTGTT dsfru-F T7- TAGTGACCAGACCCAAGA 58 431 dsRNA合成 dsfru-R T7- TGTTTCTGTCTCCCGTTA dsEGFP-F T7-CAGTGCTTCAGCCGCTACCC 58 350 dsRNA合成 dsEGFP-R T7-AGTTCACCTTGATGCCGTTCTT 表 2 生物信息学在线分析软件
Tab. 2 Online analysis software in bioinformatics
在线软件 用途 网址 ORF Finder-NCBI 开放阅读框分析 https://www.ncbi.nlm.nih.gov/orffinder/ ExPASy-ProtParam 理化性质分析 https://web.expasy.org/protparam/ ExPASy-ProtScale 亲水性/疏水性分析 https://web.expasy.org/protscale/ TMHMM Server V 2.0 跨膜结构预测 https://www.cbs.dtu.dk/services/TMHMM/ SignallP-5.0 Server 信号肽分析 https://www.cbs.dtu.dk/services/SignalP/ CDD 保守结构域预测 https://www.ncbi.nlm.nih.gov/Structure/cdd/docs/cdd_search.html PSORT II Prediction 亚细胞定位 https://psort.hgc.jp/form2.html SOPMA 二级结构预测 https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl? page=npsa_sopma.html SWISS-MODEL 三级结构预测 https://swissmodel.expasy.org/ 表 3 卤虫fru基因编码蛋白的氨基酸序列与其他物种的相似性比较
Tab. 3 Comparison of amino acid sequence similarities of proteins encoded by Artemia franciscanna and other species fru gene
序列号 物种名称 序列相似性/% RXG68647.1 鼠妇(Armadillidium vulgare) 45.95 XP_020279362.1 牛角刺槐蚁(Pseudomyrmex gracilis) 42.11 KOB68495.1 冬尺蠖蛾(Operophtera brumata) 41.44 XP_015115225.1 胡峰(Diachasma alloeum) 41.23 XP_012350829.1 小蜜蜂(Apis florea) 40.35 XP_014274254.1 茶翅蝽(Halyomorp hahalys) 40.35 XP_032451896.1 寄生蜂(Nasonia vitripennis) 40.35 OXU22454.1 灿金小蜂(Trichomalopsis sarcophagae) 40.35 XP_016919575.1 中华蜜蜂(Apis cerana) 40.35 CAA9998384.1 烟盲蝽(Nesidiocoris tenuis) 39.67 ALC42845.1 果蝇(Drosophila busckii) 39.64 KYN44668.1 北方皱切叶蚁(Trachymyrmex septentrionalis) 38.62 XP_050694347.1 中华绒螯蟹(Eriocheir sinensis) 44.35 XP_053653254.1 红螯螯虾(Cherax quadricarinatus) 35.57 -
[1] Clynen E, Ciudad L, Bellés X, et al. Conservation of fruitless’ role as master regulator of male courtship behaviour from cockroaches to flies[J]. Development Genes and Evolution, 2011, 221(1): 43−48. doi: 10.1007/s00427-011-0352-x [2] Ito H, Fujitani K, Usui K, et al. Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(18): 9687−9692. [3] Ryner L C, Goodwin S F, Castrillon D H, et al. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene[J]. Cell, 1996, 87(6): 1079−1089. doi: 10.1016/S0092-8674(00)81802-4 [4] Tanaka R, Higuchi T, Kohatsu S, et al. Optogenetic activation of the fruitless-labeled circuitry in Drosophila subobscura males induces mating motor acts[J]. Journal of Neuroscience, 2017, 37(48): 11662−11674. doi: 10.1523/JNEUROSCI.1943-17.2017 [5] Wu Shunfan, Guo Chao, Zhao Huan, et al. Drosulfakinin signaling in fruitless circuitry antagonizes P1 neurons to regulate sexual arousal in Drosophila[J]. Nature Communications, 2019, 10(1): 4770. doi: 10.1038/s41467-019-12758-6 [6] Peng Qionglin, Chen Jie, Pan Yufeng. From fruitless to sex: on the generation and diversification of an innate behavior[J]. Genes, Brain and Behavior, 2021, 20(8): e12772. doi: 10.1111/gbb.12772 [7] 陈瑶瑶, 古枫, 钟国华, 等. Fruitless在桔小实蝇求偶和交配行为中的作用[J]. 昆虫学报, 2020, 63(8): 924−931. doi: 10.16380/j.kcxb.2020.08.002Chen Yaoyao, Gu Feng, Zhong Guohua, et al. Role of fruitless in courtship and mating behaviors in Bactrocera dorsalis (Diptera Tephritidae)[J]. ActaEntomologicaSinica, 2020, 63(8): 924−931. doi: 10.16380/j.kcxb.2020.08.002 [8] 郑人文. Fruitless在家蚕求偶行为中的功能研究[D]. 重庆: 西南大学, 2016.Zheng Renwen. Functional characterization of fruitless in courtship behavior in silkworm[D]. Chongqing: Southwest University, 2016. [9] Boerjan B, Tobback J, De Loof A, et al. Fruitless RNAi knockdown in males interferes with copulation success in Schistocerca gregaria[J]. Insect Biochemistry and Molecular Biology, 2011, 41(5): 340−347. doi: 10.1016/j.ibmb.2011.01.012 [10] Glenner H, Thomsen P F, Hebsgaard M B, et al. The origin of insects[J]. Science, 2006, 314(5807): 1883−1884. doi: 10.1126/science.1129844 [11] Budd G E, Telford M J. The origin and evolution of arthropods[J]. Nature, 2009, 457(7231): 812−817. doi: 10.1038/nature07890 [12] 邱必巡. 拟穴青蟹fruitless基因鉴定及在性腺发育中的表达与调控研究[D]. 汕头: 汕头大学, 2021.Qiu Bixun. Cloning, expression and regulation of fruitless gene in gonadal development of mud crab (Scylla paramamosain)[D]. Shantou: Shantou University, 2021. [13] Li Peiyao, Liu Yuan, Luo Danli, et al. Two spliced isoforms of the sex-determination gene fruitless in the Chinese mitten crab Eriocheir sinensis[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2017, 208−209: 75−83. doi: 10.1016/j.cbpb.2017.04.008 [14] Lin Dawei, GuoYongjun, Chen Xiuli, et al. Identification and expression pattern of the sex determination gene fruitless-like in Cherax quadricarinatus[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2022, 259: 110704. doi: 10.1016/j.cbpb.2021.110704 [15] Triantaphyllidis G, Abatzopoulos T, Sorgeloos P. Review of the biogeography of the genus Artemia (Crustacea, Anostraca)[J]. Journal of Biogeography, 1998, 25(2): 213−226. doi: 10.1046/j.1365-2699.1998.252190.x [16] Lopes-dos-Santos R M A, Groot R, Sui Liying, et al. Halophilic bacteria as a food source for the brine shrimp Artemia[J]. Aquaculture, 2019, 500: 631−639. doi: 10.1016/j.aquaculture.2018.10.068 [17] Sánchez M I, Green A J, Castellanos E M. Temporal and spatial variation of an aquatic invertebrate community subjected to avian predation at the Odiel salt pans (SW Spain)[J]. Archiv für Hydrobiologie, 2006, 166(2): 199−223. [18] Sorgeloos P, Dhert P, Candreva P. Use of the brine shrimp, Artemia spp. , in marine fish larviculture[J]. Aquaculture, 2001, 200(1/2): 147−159. [19] Han Xuekai, Ren Yizhuo, Ouyang Xuemei, et al. Construction of a high-density genetic linkage map and QTL mapping for sex and growth traits in Artemia franciscana[J]. Aquaculture, 2021, 540: 736692. doi: 10.1016/j.aquaculture.2021.736692 [20] De Vos S, Bossier P, Van Stappen G, et al. A first AFLP-based genetic linkage map for brine shrimp Artemia franciscana and its application in mapping the sex locus[J]. PLoS One, 2013, 8(3): e57585. doi: 10.1371/journal.pone.0057585 [21] Li Dongrui, Ye Huili, Yang Jinshu, et al. Identification and characterization of a Masculinizer ( Masc) gene involved in sex differentiation in Artemia[J]. Gene, 2017, 614: 56−64. doi: 10.1016/j.gene.2017.03.010 [22] King A M, MacRae T H. The small heat shock protein p26 aids development of encysting Artemia embryos, prevents spontaneous diapause termination and protects against stress[J]. PLoS One, 2012, 7(8): e43723. doi: 10.1371/journal.pone.0043723 [23] 任翊卓, 韩学凯, 左佳俊, 等. Piwi基因参与两性卤虫( Artemia franciscana)的生殖调控研究[J]. 海洋与湖沼, 2021, 52(6): 1567−1576.Ren Yizhuo, HanXuekai, ZuoJiajun, et al. Thereproductive regulation of piwi in bisexual Artemia franciscana[J]. Oceanologia et Limnologia Sinica, 2021, 52(6): 1567−1576. [24] 孙瑜霞. 卤虫休眠胚胎形成过程中相关基因分子克隆及功能研究[D]. 杭州: 浙江大学, 2014.Sun Yuxia. Identification and characterization of genes in Artemia and the roles in the diapause embryo formation[D]. Hangzhou: Zhejiang University, 2014. [25] 王志伟. 对虾VEGF信号通路在WSSV感染过程中的功能研究[D]. 北京: 中国科学院大学(中国科学院海洋研究所), 2017.Wang Zhiwei. Studies on the functions of VEGF signaling pathway in shrimp during WSSV infection[D]. Beijing: Institute of Oceanology, Chinese Academy of Sciences, 2017. [26] Davis T, Kurihara J, Yoshino E, et al. Genomic organisation of the neural sexdetermination gene fruitless ( fuu) in the Hawaiian species Drosophila siluestris and the conservation of the Fru BTB protein-protein-binding domain throughout evolution[J]. Hereditas, 2000, 132(1): 67−78. [27] Bertossa R C, van de Zande L, Beukeboom L W. The fruitless gene in Nasonia displays complex sex-specific splicing and contains new zinc finger domains[J]. Molecular Biology and Evolution, 2009, 26(7): 1557−1569. doi: 10.1093/molbev/msp067 [28] Liu Yulei, Zhao Yang, Dai Zhongmin, et al. Formation of diapause cyst shell in brine shrimp, Artemia parthenogenetica, and its resistance role in environmental stresses[J]. Journal of Biological Chemistry, 2009, 284(25): 16931−16938. doi: 10.1074/jbc.M109.004051 [29] Dai Zhongmin, Li Ran, Dai Li, et al. Determination in oocytes of the reproductive modes for the brine shrimp Artemia parthenogenetica[J]. Bioscience Reports, 2011, 31(1): 17−30. doi: 10.1042/BSR20090141 [30] Copf T, Schröder R, Averof M. Ancestral role of caudal genes in axis elongation and segmentation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(51): 17711−17715. [31] Chen Dianfu, Lin Cheng, Wang Hongliang, et al. An La-related protein controls cell cycle arrest by nuclear retrograde transport of tRNAs during diapause formation in Artemia[J]. BMC Biology, 2016, 14(1): 16. doi: 10.1186/s12915-016-0239-4 [32] Boerjan B, Tobback J, Vandersmissen H P, et al. Fruitless RNAi knockdown in the desert locust, Schistocerca gregaria, influences male fertility[J]. Journal of Insect Physiology, 2012, 58(2): 265−269. doi: 10.1016/j.jinsphys.2011.11.017 [33] Demir E, Dickson B J. fruitless splicing specifies male courtship behavior in Drosophila[J]. Cell, 2005, 121(5): 785−794. doi: 10.1016/j.cell.2005.04.027 [34] Ito H, Sato K, Kondo S, et al. Fruitless represses robo1 transcription to shape male-specific neural morphology and behavior in Drosophila[J]. Current Biology, 2016, 26(12): 1532−1542. doi: 10.1016/j.cub.2016.04.067 [35] Tapia C, Parra L, Pacheco B, et al. Courtship behavior and potential indications for chemical communication in Artemia franciscana (Kellog 1906)[J]. Gayana, 2015, 79(2): 152−160. [36] Zhao Songhui, Deanhardt B, Barlow G T, et al. Chromatin-based reprogramming of a courtship regulator by concurrent pheromone perception and hormone signaling[J]. Science Advances, 2020, 6(21): eaba6913. doi: 10.1126/sciadv.aba6913