Relationship between species diversity and biomass of demersal fish in Haizhou Bay
-
摘要: 随着生物多样性的丧失,全球许多海洋生态系统的功能发生了显著变化。为了解生物多样性和生态系统功能之间的关系,科学的海洋生态保护与管理显得尤为重要。本研究根据2013−2022年春季在海州湾及其邻近海域进行的底拖网调查数据,基于结构方程模型(SEM)探究了底栖鱼类群落中环境因素、生物多样性(物种丰富度与均匀度)和生态系统功能指标(以总生物量表示)之间的关系。结果表明:物种丰富度和生物量之间存在显著的正相关,而均匀度和生物量存在显著的负相关。环境因素中盐度对物种丰富度和生物量均有显著的影响,而对于温度来说,夏季与冬季的温度比年平均温度对生物量的影响更强烈。本研究表明,生态位互补效应和选择效应这两种机制可能同时对维持海州湾底层鱼类群落中的生物多样性−生物量关系发挥了作用,此外这种关系还依赖于它们所生存的环境和栖息条件。Abstract: Many of the global ecosystem functions are changing with the loss of biodiversity. It is therefore particularly important to understand the biodiversity-ecosystem functioning (BEF) relationships to support scientific ecological conservation and management. In this study, we evaluated the relationship between environmental factors, biodiversity (species richness and evenness) and ecosystem functions (measured as total biomass) in the benthic fish community of Haizhou Bay, using structural equation modeling (SEM) based on bottom trawl survey data conducted in spring 2013−2022. The results showed that there was a significant positive correlation between species richness and biomass, and a significant negative correlation between evenness and biomass. Among the environmental factors, salinity had significant effects on both species richness and biomass. Regarding the effects of temperature, the temperatures in winter and summer had a stronger effect on biomass than that of annual average temperature. The study suggested that two mechanisms, the niche complementarity mechanism and selection mechanism, may simultaneously play a role in maintaining the biodiversity-biomass relationships in the groundfish communities of Haizhou Bay, and in addition to the fact that such relationships depend on the environmental and habitat conditions.
-
图 4 年均温度初始模型图示(a)和优化模型结果图示(b)
红色线表示显著的正影响路径,蓝色线表示显著的负影响路径,虚线表示影响不显著的路径
Fig. 4 Illustration of annual mean temperature model (a) and optimization model results (b)
Red lines indicate significant positive effects paths, blue lines indicate significant negative effects paths, and dashed lines indicate insignificant paths
图 5 季节温度模型结果图示
红色线表示显著的正影响路径,蓝色线表示显著的负影响路径,灰色虚线表示影响不显著路径,红色虚线表示有正影响的显著缺失路径
Fig. 5 Illustration of the results of seasonal temperature model
Red lines indicate significant positive effects paths, blue lines indicate significant negative effects paths, gray dashed lines indicate insignificant paths, and red dashed lines indicate significant missing paths with positive effects
表 1 各模型参数对比
Tab. 1 Comparison of parameters of each model
指标 初始模型 年均温度模型 季节温度模型 最优模型 模型设置 包含全部路径 去掉不显著路径 加入夏季与冬季温度变量 去掉不显著路径,加入显著缺失路径 显著缺失路径 无 无 均匀度和win2.SST 无 Fisher’s C 1.761 13.626 31.099 15.591 p 0.780 0.191 0.411 0.621 AIC 49.8 45.6 73.1 51.6 BIC 123.7 94.9 137.8 107.1 R2 0.34 0.35 0.41 0.39 -
[1] Micaroni V, Strano F, Crocetta F, et al. Project “biodiversity MARE tricase”: a species inventory of the coastal area of southeastern salento (Ionian Sea, Italy)[J]. Diversity, 2022, 14(11): 904. doi: 10.3390/d14110904 [2] Olsen J L. Marine community ecology and conservation[J]. Restoration Ecology, 2014, 22(5): 708−709. doi: 10.1111/rec.12142 [3] 江小雷, 岳静, 张卫国, 等. 生物多样性, 生态系统功能与时空尺度[J]. 草业学报, 2010, 19(1): 219−225.Jiang Xiaolei, Yue Jing, Zhang Weiguo, et al. Biodiversity, ecosystem functioning and spatio-temporal scales[J]. Acta Prataculturae Sinica, 2010, 19(1): 219−225. [4] Aarssen L W. High productivity in grassland ecosystems: effected by species diversity or productive species?[J]. Oikos, 1997, 80(1): 183−184. doi: 10.2307/3546531 [5] Huston M A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity[J]. Oecologia, 1997, 110(4): 449−460. doi: 10.1007/s004420050180 [6] Duffy J E, Godwin C M, Cardinale B J. Biodiversity effects in the wild are common and as strong as key drivers of productivity[J]. Nature, 2017, 549(7671): 261−264. doi: 10.1038/nature23886 [7] Maureaud A, Hodapp D, van Denderen P D, et al. Biodiversity-ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness[J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1906): 20191189. doi: 10.1098/rspb.2019.1189 [8] Greenstreet S P R, Fraser H M, Rogers S I, et al. Redundancy in metrics describing the composition, structure, and functioning of the North Sea demersal fish community[J]. ICES Journal of Marine Science, 2012, 69(1): 8−22. doi: 10.1093/icesjms/fsr188 [9] Lacoste É, Mckindsey C W, Archambault P. Biodiversity-Ecosystem Functioning (BEF) approach to further understanding aquaculture-environment interactions with application to bivalve culture and benthic ecosystems[J]. Reviews in Aquaculture, 2020, 12(4): 2027−2041. doi: 10.1111/raq.12420 [10] 唐峰华, 沈新强, 王云龙. 海州湾附近海域渔业资源的动态分析[J]. 水产科学, 2011, 30(6): 335−341.Tang Fenghua, Shen Xinqiang, Wang Yunlong. Dynamics of fisheries resources near Haizhou Bay waters[J]. Fisheries Science, 2011, 30(6): 335−341. [11] 隋昊志, 薛莹, 任一平, 等. 海州湾鱼类生态类群的研究[J]. 中国海洋大学学报, 2017, 47(12): 59−71.Sui Haozhi, Xue Ying, Ren Yiping, et al. Studies on the ecological groups of fish communities in Haizhou Bay, China[J]. Periodical of Ocean University of China, 2017, 47(12): 59−71. [12] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.6−2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2008: 6−17.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 12763.6−2007, Specifications for oceanographic survey—Part 6: marine biological survey[S]. Beijing: Standards Press of China, 2008: 6−17. [13] 李雪童, 王琨, 徐宾铎, 等. 山东近海鱼类群落种类组成与空间结构的周年变化[J]. 水产学报, 2021, 45(4): 552−562.Li Xuetong, Wang Kun, Xu Binduo, et al. Annual variation of species composition and spatial structure of fish community in Shandong offshore[J]. Journal of Fisheries of China, 2021, 45(4): 552−562. [14] Cheung W W L, Frölicher T L, Lam V W Y, et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries[J]. Science Advances, 2021, 7(40): eabh0895. doi: 10.1126/sciadv.abh0895 [15] van der Plas F. Biodiversity and ecosystem functioning in naturally assembled communities[J]. Biological Reviews, 2019, 94(4): 1220−1245. [16] Amini A, Alimohammadlou M. Toward equation structural modeling: an integration of interpretive structural modeling and structural equation modeling[J]. Journal of Management Analytics, 2021, 8(4): 693−714. doi: 10.1080/23270012.2021.1881927 [17] 王酉石, 储诚进. 结构方程模型及其在生态学中的应用[J]. 植物生态学报, 2011, 35(3): 337−344. doi: 10.3724/SP.J.1258.2011.00337Wang Youshi, Chu Chengjin. A brief introduction of structural equation model and its application in ecology[J]. Chinese Journal of Plant Ecology, 2011, 35(3): 337−344. doi: 10.3724/SP.J.1258.2011.00337 [18] Wang Xiaoyan, Ge Yuan, Gao Song, et al. Evenness alters the positive effect of species richness on community drought resistance via changing complementarity[J]. Ecological Indicators, 2021, 133: 108464. doi: 10.1016/j.ecolind.2021.108464 [19] 石亚飞, 石善恒, 黄晓敏. 基于R的结构方程模型在生态学中的应用[J]. 生态学杂志, 2022, 41(5): 1015−1023.Shi Yafei, Shi Shanheng, Huang Xiaomin. The application of structural equation modeling in ecology based on R[J]. Chinese Journal of Ecology, 2022, 41(5): 1015−1023. [20] Shipley B. Confirmatory path analysis in a generalized multilevel context[J]. Ecology, 2009, 90(2): 363−368. doi: 10.1890/08-1034.1 [21] Lefcheck J S. PIECEWISESEM: piecewise structural equation modelling in R for ecology, evolution, and systematics[J]. Methods in Ecology and Evolution, 2016, 7(5): 573−579. doi: 10.1111/2041-210X.12512 [22] Cardinale B J, Srivastava D S, Duffy J E, et al. Effects of biodiversity on the functioning of trophic groups and ecosystems[J]. Nature, 2006, 443(7114): 989−992. doi: 10.1038/nature05202 [23] Gamfeldt L, Lefcheck J S, Byrnes J E K, et al. Marine biodiversity and ecosystem functioning: what’s known and what’s next?[J]. Oikos, 2015, 124(3): 252−265. doi: 10.1111/oik.01549 [24] Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature, 1996, 379(6567): 718−720. doi: 10.1038/379718a0 [25] Roscher C, Schumacher J, Baade J, et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community[J]. Basic and Applied Ecology, 2004, 5(2): 107−121. doi: 10.1078/1439-1791-00216 [26] Tilman D, Reich P B, Knops J, et al. Diversity and productivity in a long-term grassland experiment[J]. Science, 2001, 294(5543): 843−845. doi: 10.1126/science.1060391 [27] Hillebrand H, Bennett D M, Cadotte M W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes[J]. Ecology, 2008, 89(6): 1510−1520. doi: 10.1890/07-1053.1 [28] Mancuso F P, Giommi C, Mangano M C, et al. Evenness, biodiversity, and ecosystem function of intertidal communities along the Italian coasts: experimental short-term response to ambient and extreme air temperatures[J]. Science of the Total Environment, 2023, 858: 160037. doi: 10.1016/j.scitotenv.2022.160037 [29] Yan H F, Casey J M, Knowlton N, et al. Examining the diversity, stability and functioning of marine fish communities across a latitudinal gradient[J]. Global Ecology and Biogeography, 2023, 32(1): 166−177. doi: 10.1111/geb.13611 [30] Zhang Yibo, Zhang Shun, Xu Shanliang, et al. Effects of acute low-salinity stress on osmoregulation, antioxidant capacity, and growth of the black sea bream (Acanthopagrus schlegelii)[J]. Fish Physiology and Biochemistry, 2022, 48(6): 1599−1617. doi: 10.1007/s10695-022-01144-7 [31] Ouyang Haofeng, Deng Niuniu, Xu Jiachang, et al. Effects of hyperosmotic stress on the intestinal microbiota, transcriptome, and immune function of mandarin fish (Siniperca chuatsi)[J]. Aquaculture, 2023, 563: 738901. doi: 10.1016/j.aquaculture.2022.738901 [32] 李雪童, 徐宾铎, 薛莹, 等. 海州湾秋季鱼类β多样性组分分析及其与环境因子的关系[J]. 海洋学报, 2022, 44(2): 46−56.Li Xuetong, Xu Binduo, Xue Ying, et al. β diversity and its components of the fish community in the Haizhou Bay during autumn and the relationships with environmental factors[J]. Haiyang Xuebao, 2022, 44(2): 46−56. [33] Becker A, Whitfield A K, Cowley P D, et al. Does water depth influence size composition of estuary-associated fish? Distributions revealed using mobile acoustic-camera transects along the channel of a small shallow estuary[J]. Marine and Freshwater Research, 2017, 68(11): 2163−2169. doi: 10.1071/MF16230 [34] Rijnsdorp A D, Peck M A, Engelhard G H, et al. Resolving the effect of climate change on fish populations[J]. ICES Journal of Marine Science, 2009, 66(7): 1570−1583. doi: 10.1093/icesjms/fsp056 [35] 李淼, 许友伟, 孙铭帅, 等. 气候变化对海洋鱼类群落结构的影响研究进展[J]. 海洋科学, 2022, 46(7): 120−129.Li Miao, Xu Youwei, Sun Mingshuai, et al. Effects of climate change on marine fish community structures[J]. Marine Sciences, 2022, 46(7): 120−129. [36] Liu Zunlei, Yang Linlin, Yan Liping, et al. Alteration of alpha and beta diversity in nekton community by extreme marine heatwave events: an example from the East China Sea[J]. Frontiers in Marine Science, 2022, 9: 1036047. doi: 10.3389/fmars.2022.1036047 [37] Smale D A, Wernberg T, Oliver E C J, et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services[J]. Nature Climate Change, 2019, 9(4): 306−312. doi: 10.1038/s41558-019-0412-1 [38] Pikitch E K, Rountos K J, Essington T E, et al. The global contribution of forage fish to marine fisheries and ecosystems[J]. Fish and Fisheries, 2014, 15(1): 43−64. doi: 10.1111/faf.12004 [39] Ma Shuyang, Tian Yongjun, Fu Caihong, et al. Climate-induced nonlinearity in pelagic communities and non-stationary relationships with physical drivers in the Kuroshio ecosystem[J]. Fish and Fisheries, 2021, 22(1): 1−17. doi: 10.1111/faf.12502 [40] 王阳, 温忠麟, 李伟, 等. 新世纪20年国内结构方程模型方法研究与模型发展[J]. 心理科学进展, 2022, 30(8): 1715−1733. doi: 10.3724/SP.J.1042.2022.01715Wang Yang, Wen Zhonglin, Li Wei, et al. Methodological research and model development on structural equation models in China’s mainland from 2001 to 2020[J]. Advances in Psychological Science, 2022, 30(8): 1715−1733. doi: 10.3724/SP.J.1042.2022.01715 [41] Duncan C, Thompson J R, Pettorelli N. The quest for a mechanistic understanding of biodiversity-ecosystem services relationships[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1817): 20151348. doi: 10.1098/rspb.2015.1348 [42] Daam M A, Teixeira H, Lillebø A I, et al. Establishing causal links between aquatic biodiversity and ecosystem functioning: status and research needs[J]. Science of the Total Environment, 2019, 656: 1145−1156. doi: 10.1016/j.scitotenv.2018.11.413