留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HY-2B卫星和模式风速数据随机误差及相关性分析

兰友国 林明森 张有广 杨典

兰友国,林明森,张有广,等. HY-2B卫星和模式风速数据随机误差及相关性分析[J]. 海洋学报,2023,45(10):183–194 doi: 10.12284/hyxb2023131
引用本文: 兰友国,林明森,张有广,等. HY-2B卫星和模式风速数据随机误差及相关性分析[J]. 海洋学报,2023,45(10):183–194 doi: 10.12284/hyxb2023131
Lan Youguo,Lin Mingsen,Zhang Youguang, et al. Analysis for random error and correlation of HY-2B satellite andmodel wind speed data[J]. Haiyang Xuebao,2023, 45(10):183–194 doi: 10.12284/hyxb2023131
Citation: Lan Youguo,Lin Mingsen,Zhang Youguang, et al. Analysis for random error and correlation of HY-2B satellite andmodel wind speed data[J]. Haiyang Xuebao,2023, 45(10):183–194 doi: 10.12284/hyxb2023131

HY-2B卫星和模式风速数据随机误差及相关性分析

doi: 10.12284/hyxb2023131
详细信息
    作者简介:

    兰友国(1974—),男,福建省福州市人,正高级工程师,研究方向为海洋信息探测处理。E-mail:lyg@mail.nsoas.org.cn

    通讯作者:

    林明森(1963—),男,福建省莆田市人,研究员,研究方向为微波遥感。E-mail:mslin@mail.nsoas.org.cn

  • 中图分类号: P717

Analysis for random error and correlation of HY-2B satellite andmodel wind speed data

  • 摘要: 当利用三配准(Triple Collocation,TC)方法进行误差分析时,系统间随机误差(简称误差)不相关是一个重要前提假设,而在实际应用中不同系统误差常存在相关性,基于最小二乘法扩展配准(Extended Collocation,EC)方法能够在误差相关性存在情况进行误差分析,但对于误差弱相关性情况不能够准确估计误差的标准差。为此本文提出利用3个误差独立系统对第四个系统进行误差估计的方法,同时考虑误差相关性和表征误差,在误差弱相关情况下能更精确估计系统误差的标准差。本文根据HY-2B卫星3个载荷风速观测数据集随机误差相互独立特点,利用扩展三配准(Extended Triple Collocation,ETC)方法计算得到散射计、辐射计和高度计3个载荷风速产品误差的标准差分别为0.600 m/s、0.742 m/s和0.533 m/s;再对ECMWF再分析数据集ERA5的风速产品误差及相关性进行估计,计算出ERA5再分析风速产品随机误差的标准差为0.810 m/s,HY-2B卫星散射计风速产品和ERA5再分析风速产品误差相关性为0.231,HY-2B卫星辐射计风速产品和ERA5再分析风速产品误差相关性为0.105。本文提出利用已知3个误差独立数据集对第四个数据集误差及相关性进行估计的方法,实现了在误差弱相关情况下对系统误差的标准差更为准确的估计,有助于在同化和融合中更好地使用这些数据。
  • 图  1  散射计、辐射计、高度计、ECMWF 4个数据集风速比较

    Fig.  1  Comparison of wind speeds across four datasets of S/R/A/E

    图  2  配准风速数据概率密度分布

    Fig.  2  Probability density distribution of collocated wind speed data

    图  3  HY-2B卫星风速与ECMWF风速差的概率密度分布

    Fig.  3  Probability density distribution of wind speed bias between HY-2B satellite and ECMWF

    图  4  HY-2B卫星3个风速产品相互差值概率密度分布

    Fig.  4  Probability density distribution of wind speed bias between three products of HY-2B satellite

    图  5  散射计、辐射计、高度计、ECMWF 4个数据集误差的标准差分布

    Fig.  5  Error SD distributions of four dataset of S/R/A/E

    图  6  误差的协方差分布

    Fig.  6  Distribution of error covariance

    表  1  不同误差相关性假设条件下误差及相关性(EC)

    Tab.  1  Error and correlation under different assumption (EC)

    $ Cov\left({\varepsilon }_{e}{\varepsilon }_{s}\right)\ne 0 $ $ Cov\left({\varepsilon }_{e}{\varepsilon }_{s}\right)\ne 0 $
    $ Cov\left({\varepsilon }_{e}{\varepsilon }_{r}\right)\ne 0 $
    $ Cov\left({\varepsilon }_{e}{\varepsilon }_{s}\right)\ne 0 $
    $ Cov\left({\varepsilon }_{e}{\varepsilon }_{a}\right)\ne 0 $
    $ {\sigma }_{{\varepsilon }_{e}} $ 0.769 0.769 0.769
    $ {\sigma }_{{\varepsilon }_{s}} $ 0.600 0.600 0.600
    $ {\sigma }_{{\varepsilon }_{r}} $ 0.721 0.721 0.721
    $ {\sigma }_{{\varepsilon }_{a}} $ 0.565 0.565 0.565
    $ {{\sigma }^{2}}_{t} $ 10.160 10.160 10.161
    $ Cov\left({\varepsilon }_{e}{\varepsilon }_{s}\right) $ 0.079 0.113 0.046
    $ Cov\left({\varepsilon }_{e}{\varepsilon }_{r}\right) $ 0.0 0.063 0.0
    $ Cov\left({\varepsilon }_{e}{\varepsilon }_{a}\right) $ 0.0 0.0 −0.068
    下载: 导出CSV

    表  2  散射计、辐射计、高度计、ECMWF 4个数据集不同排列情况下的误差 (ETC)

    Tab.  2  Error of different permutation of four datasets of E/S/R/A (ETC)

    S/R/A(SR, RS,
    SA, AS, RA, AR
    6种排列情况)
    E/S/A(ES, SE,
    EA, AE, SA, AS
    6种排列情况)
    E/R/A(ER, RE,
    EA, AE, RA, AR
    6种排列情况)
    E/S/R(ES, SE,
    ER, RE, SR, RS
    6种排列情况)
    $ {\sigma }_{{\varepsilon }_{e}} $ 不计算 0.739 0.769 0.693
    $ {\sigma }_{{\varepsilon }_{s}} $ 0.600 0.495 不计算 0.560
    $ {\sigma }_{{\varepsilon }_{r}} $ 0.742 不计算 0.595 0.770
    $ {\sigma }_{{\varepsilon }_{a}} $ 0.533 0.635 0.699 不计算
    $ {{\sigma }^{2}}_{t} $ 10.550 10.206 10.7535 10.271
    下载: 导出CSV

    表  3  3个数据集不同排列情况误差的协方差及表征误差

    Tab.  3  Error covariance and representative error of different permutation for three datasets

    ESA EAS ERA EAR ESR/ERS
    $ {\sigma }_{{\varepsilon }_{e}} $ 0.810 0.659 0.810 0.725 0.810
    (known)
    C Cov(εeεs):
    0.113
    Cov(εeεa):
    −0.115
    Cov(εeεr):
    0.063
    Cov(εeεa):
    −0.068
    Cov(εeεs):
    0.113
    D 不计算 不计算 不计算 不计算 Cov(εeεr):
    0.063
    Y 3.04×107 3.04×107 5.93×108 5.93×108 3.61×107
    下载: 导出CSV
  • [1] Martin S. 海洋遥感导论(修改版)[M]. 蒋兴伟, 译. 北京: 海洋出版社, 2017.

    Martin S. An Introduction to Ocean Remote Sensing[M]. Jiang Xingwei, trans. Beijing: China Ocean Press, 2017.
    [2] Stoffelen A. Toward the true near-surface wind speed: error modeling and calibration using triple collocation[J]. Journal of Geophysical Research: Oceans, 1998, 103(C4): 7755−7766. doi: 10.1029/97JC03180
    [3] Scipal K, Holmes T, De Jeu R, et al. A possible solution for the problem of estimating the error structure of global soil moisture data sets[J]. Geophysical Research Letters, 2008, 35(24): L24403. doi: 10.1029/2008GL035599
    [4] Vogelzang J, Stoffelen A, Verhoef A, et al. On the quality of high-resolution scatterometer winds[J]. Journal of Geophysical Research: Oceans, 2011, 116(C10): C10033. doi: 10.1029/2010JC006640
    [5] Vogelzang J, King G P, Stoffelen A. Spatial variances of wind fields and their relation to second-order structure functions and spectra[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 1048−1064. doi: 10.1002/2014JC010239
    [6] Zwieback S, Scipal K, Dorigo W, et al. Structural and statistical properties of the collocation technique for error characterization[J]. Nonlinear Processes in Geophysics, 2012, 19(1): 69−80. doi: 10.5194/npg-19-69-2012
    [7] Pierdicca N, Fascetti F, Pulvirenti L, et al. Quadruple collocation analysis for soil moisture product assessment[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1595−1599. doi: 10.1109/LGRS.2015.2414654
    [8] Pan Ming, Fisher C K, Chaney N W, et al. Triple collocation: beyond three estimates and separation of structural/non-structural errors[J]. Remote Sensing of Environment, 2015, 171: 299−310. doi: 10.1016/j.rse.2015.10.028
    [9] Gruber A, Su C H, Crow W T, et al. Estimating error cross-correlations in soil moisture data sets using extended collocation analysis[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(3): 1208−1219. doi: 10.1002/2015JD024027
    [10] McColl K A, Vogelzang J, Konings A G, et al. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target[J]. Geophysical Research Letters, 2014, 41(17): 6229−6236. doi: 10.1002/2014GL061322
    [11] Konings A G, Mccoll K A, Alemohammad S H, et al. Error characterization of similar products: Triple collocation with correlated errors[C]//AGU Fall Meeting Abstracts. Washington: AGU, 2014.
    [12] Lin Wenming, Portabella M, Stoffelen A, et al. ASCAT wind quality under high subcell wind variability conditions[J]. Journal of Geophysical Research: Oceans, 2015, 120(8): 5804−5819. doi: 10.1002/2015JC010861
    [13] Abdalla S, De Chiara G. Estimating random errors of scatterometer, altimeter, and model wind speed data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2406−2414. doi: 10.1109/JSTARS.2017.2659220
    [14] Vogelzang J, Stoffelen A. Quadruple collocation analysis of in-situ, scatterometer, and NWP winds[R/OL]. (2023−01−18) [2023−02−02]. Oceanography, 2021. https://essopenarchive.org/doi/full/10.1002/essoar.10505872.1.
    [15] Vogelzang J, Stoffelen A. On the accuracy and consistency of quintuple collocation analysis of in situ, scatterometer, and NWP Winds[J]. Remote Sensing, 2022, 14(18): 4552. doi: 10.3390/rs14184552
    [16] 吕思睿, 林文明, 邹巨洪, 等. 多源卫星遥感海面风速误差分析和交叉标定[J]. 海洋学报, 2023, 45(5): 118−128 doi: 10.12284/hyxb2022-0000-00

    Lü Sirui, Lin Wenming, Zou Juhong, et al. Error quantification and cross calibration of sea surface wind speeds from multiple remote sensing satellites[J]. Haiyang Xuebao, 2023, 45(5): 118−128. doi: 10.12284/hyxb2022-0000-00
    [17] 林明森, 何贤强, 贾永君, 等. 中国海洋卫星遥感技术进展[J]. 海洋学报, 2019, 41(10): 99−112, doi: 10.3969/j.issn.0253-4193.2019.10.006

    Lin Mingsen, He Xianqiang, Jia Yongjun, et al. Advances in marine satellite remote sensing technology in China[J]. Haiyang Xuebao, 2019, 41(10): 99−112. doi: 10.3969/j.issn.0253-4193.2019.10.006
    [18] Gourrion J, Vandemark D, Bailey S, et al. A two-parameter wind speed algorithm for Ku-band altimeters[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(12): 2030−2048. doi: 10.1175/1520-0426(2002)019<2030:ATPWSA>2.0.CO;2
    [19] Molina M O, Gutiérrez C, Sánchez E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset[J]. International Journal of Climatology, 2021, 41(10): 4864−4878. doi: 10.1002/joc.7103
    [20] Efron B, Tibshirani R J. An Introduction to the Bootstrap[M]. New York: Chapman and Hall/CRC, 1994.
    [21] Caires S, Sterl A. Validation of ocean wind and wave data using triple collocation[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3): 3098. doi: 10.1029/2002jc001491
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  147
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-06
  • 修回日期:  2023-06-19
  • 网络出版日期:  2023-11-16
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回