[1] |
Longuet-Higgins H C. Planetary waves on a rotating sphere[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1964, 279(1379): 446−473.
|
[2] |
Pedlosky J. Geophysical Fluid Dynamics[M]. New York: Springer, 1987.
|
[3] |
Pedlosky J, Spall M. Rossby normal modes in basins with barriers[J]. Journal of Physical Oceanography, 1999, 29(9): 2332−2349. doi: 10.1175/1520-0485(1999)029<2332:RNMIBW>2.0.CO;2
|
[4] |
Pedlosky J. The destabilization of Rossby normal modes by meridional baroclinic shear[J]. Journal of Physical Oceanography, 2002, 32(8): 2418−2423. doi: 10.1175/1520-0485(2002)032<2418:TDORNM>2.0.CO;2
|
[5] |
Ahlquist J E. Normal-mode global Rossby waves: theory and observations[J]. Journal of the Atmospheric Sciences, 1982, 39(2): 193−202. doi: 10.1175/1520-0469(1982)039<0193:NMGRWT>2.0.CO;2
|
[6] |
Ahlquist J E. Climatology of normal mode Rossby waves[J]. Journal of the Atmospheric Sciences, 1985, 42(19): 2059−2068. doi: 10.1175/1520-0469(1985)042<2059:CONMRW>2.0.CO;2
|
[7] |
Hirooka T, Hirota I. Further evidence of normal mode Rossby waves[M]//Plumb R A, Vincent R A. Middle Atmosphere. Basel: Birkhäuser, 1989: 277−289.
|
[8] |
Madden R A. Large-scale, free Rossby waves in the atmosphere—an update[J]. Tellus A: Dynamic Meteorology and Oceanography, 2007, 59(5): 571−590. doi: 10.1111/j.1600-0870.2007.00257.x
|
[9] |
Sassi F, Garcia R R, Hoppel K W. Large-scale Rossby normal modes during some recent northern Hemisphere winters[J]. Journal of the Atmospheric Sciences, 2012, 69(3): 820−839. doi: 10.1175/JAS-D-11-0103.1
|
[10] |
Weijer W, Vivier F, Gille S T, et al. Multiple oscillatory modes of the Argentine basin. Part I: statistical analysis[J]. Journal of Physical Oceanography, 2007, 37(12): 2855−2868. doi: 10.1175/2007JPO3527.1
|
[11] |
Weijer W, Vivier F, Gille S T, et al. Multiple oscillatory modes of the Argentine basin. Part II: the spectral origin of basin modes[J]. Journal of Physical Oceanography, 2007, 37(12): 2869−2881. doi: 10.1175/2007JPO3688.1
|
[12] |
Mensah V, Ohshima K I. Variabilities of the sea surface height in the Kuril Basin of the Sea of Okhotsk: coherent shelf-trapped mode and Rossby normal modes[J]. Journal of Physical Oceanography, 2020, 50(8): 2289−2313. doi: 10.1175/JPO-D-19-0216.1
|
[13] |
Xie Lingling, Zheng Quanan. New insight into the South China Sea: Rossby normal modes[J]. Acta Oceanologica Sinica, 2017, 36(7): 1−3. doi: 10.1007/s13131-017-1077-0
|
[14] |
Xie Lingling, Zheng Quanan, Zhang Shuwen, et al. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry[J]. International Journal of Remote Sensing, 2018, 39(2): 399−417. doi: 10.1080/01431161.2017.1384591
|
[15] |
郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
|
[16] |
Zhang Meng, von Storch H, Chen Xueen, et al. Temporal and spatial statistics of travelling eddy variability in the South China Sea[J]. Ocean Dynamics, 2019, 69(8): 879−898. doi: 10.1007/s10236-019-01282-2
|
[17] |
Huang Runqi, Xie Linging, Zheng Quanan, et al. Statistical analysis of mesoscale eddy propagation velocity in the South China Sea deep basin[J]. Acta Oceanologica Sinica, 2020, 39(11): 91−102. doi: 10.1007/s13131-020-1678-x
|
[18] |
Fang Guohong, Wang Gang, Fang Yue, et al. A review on the South China Sea western boundary current[J]. Acta Oceanologica Sinica, 2012, 31(5): 1−10. doi: 10.1007/s13131-012-0231-y
|
[19] |
Zhang Jinchao, Zhang Zhiwei, Qiu Bo, et al. Seasonal modulation of submesoscale kinetic energy in the upper ocean of the northeastern South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(11): e2021JC017695. doi: 10.1029/2021JC017695
|
[20] |
Liang X S, Anderson D G M. Multiscale window transform[J]. Multiscale Modeling & Simulation, 2007, 6(2): 437−467. doi: 10.1137/06066895X
|
[21] |
Liang X S. Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres[J]. Journal of the Atmospheric Sciences, 2016, 73(11): 4439−4468. doi: 10.1175/JAS-D-16-0131.1
|
[22] |
Granger C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3): 424−438. doi: 10.2307/1912791
|
[23] |
Pearl J. Causality: Models, Reasoning, and Inference[M]. 2nd ed. New York: Cambridge University Press, 2009.
|
[24] |
Liang X S. Unraveling the cause-effect relation between time series[J]. Physical Review E, 2014, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150
|
[25] |
Liang X S. Information flow and causality as rigorous notions ab initio[J]. Physical Review E, 2016, 94(5): 052201. doi: 10.1103/PhysRevE.94.052201
|
[26] |
Liang X S. Normalized multivariate time series causality analysis and causal graph reconstruction[J]. Entropy, 2021, 23(6): 679. doi: 10.3390/e23060679
|
[27] |
Hu Jianyu, Kawamura H, Hong Huasheng, et al. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion[J]. Journal of Oceanography, 2000, 56(6): 607−624. doi: 10.1023/a:1011117531252
|
[28] |
Gan Jianping, Li H, Curchitser E N, et al. Modeling South China Sea circulation: response to seasonal forcing regimes[J]. Journal of Geophysical Research: Oceans, 2006, 111(C6): C06034. doi: 10.1029/2005JC003298
|
[29] |
Qu Tangdong. Upper-layer circulation in the South China Sea[J]. Journal of Physical Oceanography, 2000, 30(6): 1450−1460. doi: 10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2
|
[30] |
Xue Huijie, Chai Fei, Pettigrew N, et al. Kuroshio intrusion and the circulation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02017. doi: 10.1029/2002JC001724
|
[31] |
Yang Haijun, Liu Qinyu, Liu Zhengyu, et al. A general circulation model study of the dynamics of the upper ocean circulation of the South China Sea[J]. Journal of Geophysical Research: Oceans, 2002, 107(C7): 3085. doi: 10.1029/2001JC001084
|
[32] |
Yuan Dongliang. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport[J]. Acta Oceanologica Sinica, 2002, 21(2): 187−202.
|
[33] |
Tian Jiwei, Yang Qingxuan, Liang Xinfeng, et al. Observation of Luzon Strait transport[J]. Geophysical Research Letters, 2006, 33(19): L19607. doi: 10.1029/2006GL026272
|
[34] |
Yang Qingxuan, Tian Jiwei, Zhao Wei. Observation of Luzon Strait transport in summer 2007[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(5): 670−676. doi: 10.1016/j.dsr.2010.02.004
|
[35] |
Zhang Zhengguang, Zhao Wei, Liu Qinyu. Sub-seasonal variability of Luzon Strait transport in a high resolution global model[J]. Acta Oceanologica Sinica, 2010, 29(3): 9−17. doi: 10.1007/s13131-010-0032-0
|
[36] |
Rong Yineng, Liang X S. Panel data causal inference using a rigorous information flow analysis for homogeneous, independent and identically distributed datasets[J]. IEEE Access, 2021, 9: 47266−47274. doi: 10.1109/ACCESS.2021.3068273
|
[37] |
Nan Feng, Xue Huijie, Chai Fei, et al. Identification of different types of Kuroshio intrusion into the South China Sea[J]. Ocean Dynamics, 2011, 61(9): 1291−1304. doi: 10.1007/s10236-011-0426-3
|
[38] |
Liu Qinyu, Yang Haijun, Liu Zhengyu. Seasonal features of the Sverdrup circulation in the South China Sea[J]. Progress in Natural Science, 2001, 11(3): 203−206.
|
[39] |
Yang Haiyuan, Wu Lixin, Sun Shantong, et al. Low-frequency variability of monsoon-driven circulation with application to the South China Sea[J]. Journal of Physical Oceanography, 2015, 45(6): 1632−1650. doi: 10.1175/JPO-D-14-0212.1
|
[40] |
Yuan Dongliang, Han Weiqing, Hu Dunxin. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters[J]. Geophysical Research Letters, 2007, 34(13): L13610. doi: 10.1029/2007GL029401
|
[41] |
Wang Guihua, Chen Dake, Su Jilan. Winter eddy genesis in the eastern South China Sea due to orographic wind jets[J]. Journal of Physical Oceanography, 2008, 38(3): 726−732. doi: 10.1175/2007JPO3868.1
|
[42] |
Chu P C, Chen Yuchun, Lu Shihua. Wind-driven South China Sea deep basin warm-core/cool-core eddies[J]. Journal of Oceanography, 1998, 54(4): 347−360. doi: 10.1007/BF02742619
|
[43] |
Wang Bin, Huang Fei, Wu Zhiwei, et al. Multi-scale climate variability of the South China Sea monsoon: a review[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 15−37. doi: 10.1016/j.dynatmoce.2008.09.004
|
[44] |
Xie Shangping, Chang C H, Xie Qiang, et al. Intraseasonal variability in the summer South China Sea: wind jet, cold filament, and recirculations[J]. Journal of Geophysical Research: Oceans, 2007, 112(C10): C10008. doi: 10.1029/2007JC004238
|
[45] |
Wang Guihua, Wang Chunzai, Huang Ruixin. Interdecadal variability of the eastward current in the South China Sea associated with the summer Asian monsoon[J]. Journal of Climate, 2010, 23(22): 6115−6123. doi: 10.1175/2010JCLI3607.1
|
[46] |
Ngo M H, Hsin Y C. Impacts of wind and current on the interannual variation of the summertime upwelling off southern Vietnam in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(6): e2020JC016892. doi: 10.1029/2020JC016892
|