Early diagenetic processes and influencing factors of the Changjiang River Estuary and East China Sea inner-shelf
-
摘要: 边缘海沉积物中的早期成岩作用是影响碳循环和埋藏的重要过程,目前对早期成岩过程及其影响因素的了解还不够深入。于2018年8月在长江口−东海内陆架采集了短柱状沉积物,对间隙水中溶解无机碳(DIC)、溶解无机氮(DIN)、二价铁(
${\rm{Fe}}^{2+}$ )、二价锰(${\rm{ Mn}}^{2+}$ )和硫酸根(${\rm{SO}}^{2-}_4$ )离子等参数进行了分析,并结合表层沉积物中粒度、比表面积、有机碳及稳定碳同位素组成和底层水环境参数,研究了不同沉积环境下沉积物中的早期成岩过程及其影响因素。结果表明,长江口−东海内陆架泥质区沉积物间隙水中DIC和${{\rm {NH}}_4^+} $ 的浓度随着深度的增加逐渐增大,且在其中心站位有较高的DIC、${{\rm {NH}}_4^+} $ 产生通量(分别为4.03 mmol/(m2·d)和0.57 mmol/(m2·d))和${{\rm {SO}}_4^{2-}} $ 消耗通量(−4.56 mmol/(m2·d)),沉积物扰动深度为20~40 cm,自长江口向浙闽沿岸逐渐降低;而在砂质区,各溶质在剖面上均无明显变化,且通量较小(DIC: 0.60 mmol/(m2·d);${{\rm {NH}}_4^+} $ :−0.03 mmol/(m2·d);${{\rm {SO}}_4^{2-}} $ :−1.05 mmol/(m2·d)),沉积物不存在扰动。扰动层厚度与沉积物间隙水中DIC和${{\rm {NH}}_4^+} $ 等溶质通量呈正相关,表明沉积物的物理扰动是影响泥质区沉积有机碳再矿化的重要因素。综合上述结果,发现沉积有机碳在泥质区扰动层的降解方式以铁锰还原作用为主,扰动层以下以硫酸盐还原作用为主,而在砂质区的降解主要靠耗氧呼吸作用。本研究丰富了长江口及邻近海域沉积动力过程对早期成岩作用影响的认识,有助于深入理解大河河口及邻近海域有机碳的循环和埋藏。Abstract: Early diagenesis in marginal sea sediments is an important process that affects carbon cycling and burial. Early diagenetic processes and influencing factors, however, remains poorly constrained. Dissolved inorganic carbon (DIC), dissolved inorganic nitrogen (DIN), Fe2+, Mn2+, sulfate and other parameters in sediment porewaters of five short cores collected in August 2018 from the Changjiang River Estuary and East China Sea inner-shelf were analyzed. In combination with grain size composition, specific surface area, organic carbon concentrations and stable carbon isotopic composition in surface sediments and bottom water parameters, the early diagenetic processes and influencing factors in sediments under different sedimentary regimes were studied. Concentrations of DIC and${{\rm {NH}}_4^+} $ in sediment porewaters in the mud area gradually increase with depth, and relatively high production fluxes of DIC and${{\rm {NH}}_4^+} $ (4.03 mmol/(m2·d) and 0.57 mmol/(m2·d), respectively) and consumption fluxes of${{\rm {SO}}_4^{2-}} $ (−4.56 mmol/(m2·d)) are observed at the center of the mud area, while in the sandy area, there are no obvious variations of these solutes, and the fluxes are lower compared with those in muddy sediments. According to the vertical distributions of these solutes in the sediment porewaters, the sediment disturbance depth in the mud area varies at 20−40 cm, and gradually decreases from the Changjiang River Estuary mud area to the Zhe-Min coast mud area, whereas in the sandy area, no sediment disturbance is found. The thickness of sediment disturbed layer is positively correlated with solute fluxes (e.g., DIC and${{\rm {NH}}_4^+} $ ) in sediment porewaters, indicating that the physical reworking of sediments is an important factor affecting the remineralization of sedimentary organic carbon in the mud area. In general, the main decomposition pathway of the sedimentary organic carbon in the disturbed layer of the mud area is iron/manganese reduction, and below the disturbed layer the main pathway is the sulfate reduction, while in the sandy area, the main degradation pathway is aerobic respiration. This study enriches the understanding of the impact of sedimentary dynamic processes on early diagenesis in the Changjiang River Estuary and adjacent sea areas, and contributes to better understand the cycling and burial of organic carbon in the large-river estuary and adjacent sea areas. -
图 2 长江口−东海内陆架沉积物间隙水中 DIC(a−e),
$ {{\rm {NH}}_4^+} $ (a−e),$ {{\rm {SO}}_4^{2-}} $ (a−e),${\rm{NO}}_3^-$ (f−j),$ {{\rm {NO}}_2^-}$ (f−j),Fe2+(k−o)和Mn2+(k−o)的浓度剖面图中虚线为扰动层和非扰动层的分界线
Fig. 2 Concentration profile of DIC (a−e),
$ {{\rm {NH}}_4^+} $ (a−e),$ {{\rm {SO}}_4^{2-}} $ (a−e),${{\rm {NO}}_3^-}$ (f−j),$ {{\rm {NO}}_2^-} $ (f−j), Fe2+ (k−o) and Mn2+ (k−o) in sediment porewater of the Changjiang River Estuary and East China Sea inner-shelfThe dotted line in the figure is the boundary between the reworked layer and the unreworked layer
图 3 长江口−东海内陆架沉积物间隙水中DIC(a)、
$ {{\rm {NH}}_4^+} $ (b)、${{\rm {SO}}_4^{2-}} $ (c)的通量分布图中红色站位为本研究站位,灰色站位重新计算于参考文献[19]
Fig. 3 Fluxes distribution of DIC (a),
$ {{\rm {NH}}_4^+} $ (b) and${{\rm {SO}}_4^{2-}} $ (c) in sediment porewater of the Changjiang RiverEstuary and East China Sea inner-shelfThe red station in the figure is the station of this study, and the gray station is recalculated in the reference [19]
图 5 长江口−东海内陆架沉积物间隙水扰动层与非扰动层中
${{\rm {NH}}_4^+} $ (a)、${{\rm {SO}}_4^{2-}} $ (b)浓度与DIC浓度的关系Fig. 5 Relationship between concentrations of
${{\rm {NH}}_4^+} $ (a),${{\rm {SO}}_4^{2-}} $ (b) and DIC in the reworked and unreworked layers of sediment porewater in the Changjiang River Estuary and East China Sea inner-shelf图 6 长江口−东海内陆架沉积物间隙水扰动层厚度与 DIC(a)、
$ {{\rm {NH}}_4^+} $ (b)、${{\rm {SO}}_4^{2-}} $ (c)通量的关系以及 δ13C 与${{\rm {SO}}_4^{2-}} $ 通量(d)的关系Fig. 6 The relationship between the thickness of sediment porewater reworked layer and DIC (a),
$ {{\rm {NH}}_4^+} $ (b) and${{\rm {SO}}_4^{2-}} $ (c) fluxes and relationship between δ13C and${{\rm {SO}}_4^{2-}} $ fluxes (d) in the Changjiang River Estuary and East China Sea inner-shelf表 1 长江口−东海内陆架底层水和表层沉积物的基本理化参数
Tab. 1 Basic physical and chemical parameters of bottom water and surface sediment in the Changjiang River Estuary and East China Sea inner-shelf
站位 水深/m 底层水温/°C 底层水盐度 底层DO含量/(mg·L−1) TOC含量/% δ13C值/‰ 孔隙度 SSA/(m2·g−1) 中值粒径/μm (TOC/SSA) /(mg·m−2) A6−3 13.7 25.4 28.0 5.18 0.69 −22.96 0.81 16.63 7.3 0.41 C2 18.3 27.3 29.4 6.75 0.68 −22.86 0.70 17.33 7.3 0.39 F2 26.4 25.2 34.0 1.58 0.54 −22.23 0.76 15.79 8.9 0.34 H2 26.2 26.4 34.1 3.14 0.61 −22.09 0.73 16.68 6.6 0.37 A6−7 47.0 21.1 30.1 3.19 0.29 −21.75 0.59 3.90 102 0.74 表 2 长江口−东海内陆架沉积物间隙水中溶质的产生/消耗通量(正值代表产生,负值代表消耗)
Tab. 2 Production/consumption fluxes of solute in sediment porewater of the Changjiang River Estuary and East China Sea inner-shelf (positive value represents generation, negative value represents consumption)
站位 产生/消耗通量/(mmol·m−2·d−1) DIC $ {{\rm {NH}}_4^+} $ $ {{\rm {SO}}_4^{2-}} $ Fe2+ Mn2+ A6−3 4.03 0.57 −4.56 0.01 −0.03 C2 0.74 0.14 −1.14 0.02 −0.01 F2 3.23 0.29 −2.19 0 −0.01 H2 0.45 0.06 −1.04 0 0 A6−7 0.60 −0.03 −1.05 0 0 表 3 世界典型河口和海洋环境沉积物间隙水中 DIC、
$\bf{{ {NH}}_4^+}$ 、${\bf{{{{SO}}_4^{2-}} }}$ 的产生和消耗通量(单位:mmol/(m2·d))Tab. 3 Fluxes of DIC,
$ {{\bf {NH}}_4^+}$ ,${{\bf {SO}}_4^{2-}}$ in sediment porewater of typical estuaries and marine environment sediments in the world (unit: mmol/(m2·d) )区域 DIC $ {{\rm {NH}}_4^+} $ ${{\rm {SO}}_4^{2-}} $ 使用方法 参考文献 长江口 0.45~4.03 0.03~0.57 −1.04~−4.56 PROFILE模型 本研究 长江口 0.08~7.59 0.02~0.54 −0.03~−10.86 PROFILE模型 文献[19](重新计算) 黄河口 2.18~16.55 0.01~1.37 −12.91~−31.64 PROFILE模型 文献[46] 东海泥质区 2.94~11.7 0.56~2.78 −5.78~−16.2 沉积物培养实验 文献[19] 南黄海泥质区 2.36~3.13 0.42~0.62 −2.26~−2.60 沉积物培养实验 文献[19] 巴布亚新几内亚湾 10~42 − − 沉积物培养实验 文献[47] 亚马孙−圭亚那移动泥带 19~127 − − 沉积物培养实验 文献[9] 亚马孙河口 1.79~42.57 0.03~2.94 − 沉积物培养实验 文献[48] 法属圭亚那 20~235 − − 沉积物培养实验 文献[12] 刚果河口 1.13~4.08 0.11~0.37 − Fick第一定律 文献[49] 波罗的海深水 0.01~3.33 0~0.38 − Fick第一定律 文献[50] 波罗的海 2.3~43.5 − − 沉积物培养实验 文献[51] 格但斯克盆地 − 0.29~2.95 − Fick第一定律 文献[52] 格但斯克盆地 − 0.21~3.43 − 沉积物培养实验 文献[52] 墨西哥湾 3.4~82 0~7.2 − 沉积物培养实验 文献[53] 毛里塔尼亚 5.64~20.06 − − 沉积物培养实验 文献[54] 新斯科舍浅海 14.74~151.53 −4.07~9.24 − 沉积物培养实验 文献[55] 亚得里亚海 0.50~8.76 0.04~1.62 − Fick第一定律 文献[56] 亚得里亚海 2.2~173 0.16~1.61 − 沉积物培养实验 文献[56] 新不列颠海沟 0.10~0.60 − − Fick第一定律 文献[57] 拉普捷夫海 0.08~0.19 − − 稳态下的一般反应−输运方程 文献[58] 阿鲁海 0.6~38.4 0.01~4.2 − 沉积物培养实验 文献[59] 注:“−”代表未检测。 -
[1] Bianchi T S, Allison M A. Large-river delta-front estuaries as natural “recorders” of global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8085−8092. doi: 10.1073/pnas.0812878106 [2] Benner R, Fogel M L, Sprague E K, et al. Depletion of 13C in lignin and its implications for stable carbon isotope studies[J]. Nature, 1987, 329(6141): 708−710. doi: 10.1038/329708a0 [3] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81−115. [4] Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton: Princeton University Press, 1980. [5] Bianchi T S, Schreiner K M, Smith R W, et al. Redox effects on organic matter storage in coastal sediments during the Holocene: a biomarker/proxy perspective[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 295−319. doi: 10.1146/annurev-earth-060614-105417 [6] Aller R C, Blair N E. Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): net loss of terrestrial C and diagenetic fractionation of C isotopes[J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1815−1825. doi: 10.1016/j.gca.2003.10.028 [7] Aller R C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors[J]. Marine Chemistry, 1998, 61(3/4): 143−155. [8] McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24(7/8): 899−926. [9] Aller R C, Blair N E. Carbon remineralization in the Amazon–Guianas tropical mobile mudbelt: a sedimentary incinerator[J]. Continental Shelf Research, 2006, 26(17/18): 2241−2259. [10] 于志刚, 姚鹏, 甄毓, 等. 河口及近岸海域底边界层生物地球化学过程研究进展[J]. 海洋学报, 2011, 33(5): 1−8.Yu Zhigang, Yao Peng, Zhen Yu, et al. Advances in biogeochemical process in benthic boundary layer of estuarine and coastal area[J]. Haiyang Xuebao, 2011, 33(5): 1−8. [11] Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4671−4692. doi: 10.1016/j.gca.2010.05.008 [12] Aller R C, Hannides A, Heilbrun C, et al. Coupling of early diagenetic processes and sedimentary dynamics in tropical shelf environments: the Gulf of Papua deltaic complex[J]. Continental Shelf Research, 2004, 24(19): 2455−2486. doi: 10.1016/j.csr.2004.07.018 [13] Severmann S, McManus J, Berelson W M, et al. The continental shelf benthic iron flux and its isotope composition[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3984−4004. doi: 10.1016/j.gca.2010.04.022 [14] Zhao Bin, Yao Peng, Bianchi T S, et al. Controls on organic carbon burial in the eastern China marginal seas: a regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006608. [15] Xu Bochao, Bianchi T S, Allison M A, et al. Using multi-radiotracer techniques to better understand sedimentary dynamics of reworked muds in the Changjiang River Estuary and inner shelf of East China Sea[J]. Marine Geology, 2015, 370: 76−86. doi: 10.1016/j.margeo.2015.10.006 [16] 王鹏皓. 长江口海域环境要素分布及湍流混合[D]. 舟山: 浙江海洋大学, 2020.Wang Penghao. Distribution of environmental factors and mixing of turbulence out of the Yangtze Estuary[D]. Zhoushan: Zhejiang Ocean University, 2020. [17] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17/18): 2141−2156. [18] 陈立雷. 东海闽浙沿岸全新世古气候和古环境演变的生物标志物记录[D]. 武汉: 中国地质大学, 2018.Chen Lilei. Biomarker records from the Zhejiang-Fujian Coast, East China Sea: implications for paleoclimatic and paleoenvironmental changes in Holocene[D]. Wuhan: China University of Geosciences, 2018. [19] Zhao Bin, Yao Peng, Bianchi T S, et al. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas[J]. Chemical Geology, 2018, 495: 104−117. doi: 10.1016/j.chemgeo.2018.08.012 [20] 鲍根德, 黄德佩, 汪依凡, 等. 长江口及邻近陆架区表层沉积物和间隙水中锰的地球化学[J]. 东海海洋, 1986(2): 38−43.Bao Gende, Huang Depei, Wang Yifan, et al. Geochemistry of manganese in the surface sediments and interstitial water of the Changjiang Estuary and its adjacent continental shelf[J]. Donghai Marine Science, 1986(2): 38−43. [21] 邹建军, 石学法, 刘季花, 等. 长江口及其邻近海域孔隙水地球化学特征[J]. 地球化学, 2010, 39(6): 580−589. doi: 10.19700/j.0379-1726.2010.06.008Zou Jianjun, Shi Xuefa, Liu Jihua, et al. Geochemical characteristics of pore water in the Yangtze Estuary and adjacent areas[J]. Geochimica, 2010, 39(6): 580−589. doi: 10.19700/j.0379-1726.2010.06.008 [22] Yao Peng, Zhao Bin, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91: 1−11. doi: 10.1016/j.csr.2014.08.010 [23] 吕仁燕, 朱茂旭, 李铁, 等. 东海陆架泥质沉积物中固相Fe形态及其对有机质、Fe、S成岩路径的制约意义[J]. 地球化学, 2011, 40(4): 363−371. doi: 10.19700/j.0379-1726.2011.04.004Lü Renyan, Zhu Maoxu, Li Tie, et al. Speciation of solid-phase iron in mud sediments collected from the shelf of the East China Sea: constraints on diagenetic pathways of organic matter, iron, and sulfur[J]. Geochimica, 2011, 40(4): 363−371. doi: 10.19700/j.0379-1726.2011.04.004 [24] Zhu Maoxu, Chen Keke, Yang Guipeng, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs)[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(11): 2811−2828. doi: 10.1002/2016JG003391 [25] Seeberg-Elverfeldt J, Schlüter M, Feseker T, et al. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems[J]. Limnology and Oceanography: Methods, 2005, 3(8): 361−371. doi: 10.4319/lom.2005.3.361 [26] Hu Limin, Guo Zhigang, Feng Jialiang, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China[J]. Marine Chemistry, 2009, 113(3/4): 197−211. [27] Zhao Bin, Yao Peng, Bianchi T S, et al. Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf[J]. Journal of Marine Systems, 2017, 172: 64−74. doi: 10.1016/j.jmarsys.2017.03.001 [28] 高晶晶, 刘季花, 乔淑卿, 等. 电感耦合等离子体−发射光谱法测定海洋沉积物中的常、微量元素[J]. 光谱实验室, 2010, 27(3): 1050−1054. doi: 10.3969/j.issn.1004-8138.2010.03.059Gao Jingjing, Liu Jihua, Qiao Shuqing, et al. Determination of major and minor elements in oceanic sediments by ICP-OES[J]. Chinese Journal of Spectroscopy Laboratory, 2010, 27(3): 1050−1054. doi: 10.3969/j.issn.1004-8138.2010.03.059 [29] Berg P, Risgaard-Petersen N, Rysgaard S. Interpretation of measured concentration profiles in sediment pore water[J]. Limnology and Oceanography, 1998, 43(7): 1500−1510. doi: 10.4319/lo.1998.43.7.1500 [30] Li Yuanhui, Gregory S. Diffusion of ions in sea water and in deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1974, 38(5): 703−714. doi: 10.1016/0016-7037(74)90145-8 [31] Chen Jiyu, Zhu Huifang, Dong Yongfa, et al. Development of the Changjiang Estuary and its submerged delta[J]. Continental Shelf Research, 1985, 4(1/2): 47−56. [32] Reimers C E, Stecher III H A, Taghon G L, et al. In situ measurements of advective solute transport in permeable shelf sands[J]. Continental Shelf Research, 2004, 24(2): 183−201. doi: 10.1016/j.csr.2003.10.005 [33] Hou Lijun, Liu Min, Xu Shiyuan, et al. The diffusive fluxes of inorganic nitrogen across the intertidal sediment-water interface of the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2006, 25(3): 48−57. [34] 李佳霖, 白洁, 高会旺, 等. 长江口邻近海域夏季沉积物硝化细菌与硝化作用[J]. 环境科学, 2009, 30(11): 3203−3208. doi: 10.3321/j.issn:0250-3301.2009.11.014Li Jialin, Bai Jie, Gao Huiwang, et al. Nitrifying bacteria and nitrification in sediment at the adjacent sea area of Yangtze River Estuary in Summer[J]. Environmental Science, 2009, 30(11): 3203−3208. doi: 10.3321/j.issn:0250-3301.2009.11.014 [35] Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3867−3883. doi: 10.1016/0016-7037(93)90340-3 [36] Aller R C. Conceptual models of early diagenetic processes: the muddy seafloor as an unsteady, batch reactor[J]. Journal of Marine Research, 2004, 62(6): 815−835. doi: 10.1357/0022240042880837 [37] Lovley D R, Phillips E J P. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric Iron reduction in sediments[J]. Applied and Environmental Microbiology, 1987, 53(11): 2636−2641. doi: 10.1128/aem.53.11.2636-2641.1987 [38] Aller R C. The sedimentary Mn cycle in Long Island Sound: its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balances[J]. Journal of Marine Research, 1994, 52(2): 259−295. doi: 10.1357/0022240943077091 [39] Hedges J I. Global biogeochemical cycles: progress and problems[J]. Marine Chemistry, 1992, 39(1/3): 67−93. [40] Qiao Shuqing, Shi Xuefa, Wang Guoqing, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390: 270−281. doi: 10.1016/j.margeo.2017.06.004 [41] Bauer J E, Bianchi T S. Dissolved organic carbon cycling and transformation[J]. Treatise on Estuarine and Coastal Science, 2011, 5: 7−67. [42] Li Dong, Yao Peng, Bianchi T S, et al. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: implication for the influence of Three Gorges Dam[J]. Journal of Marine Systems, 2014, 139: 409−419. doi: 10.1016/j.jmarsys.2014.08.009 [43] 姚鹏, 郭志刚, 于志刚. 大河影响下的陆架边缘海沉积有机碳的再矿化作用[J]. 海洋学报, 2014, 36(2): 23−32.Yao Peng, Guo Zhigang, Yu Zhigang. Remineralization of sedimentary organic carbon in river dominated ocean margins[J]. Haiyang Xuebao, 2014, 36(2): 23−32. [44] Song Shasha, Santos I R, Yu Huaming, et al. A global assessment of the mixed layer in coastal sediments and implications for carbon storage[J]. Nature Communications, 2022, 13(1): 4903. doi: 10.1038/s41467-022-32650-0 [45] Aller R C, Mackin J E, Ullman W J, et al. Early chemical diagenesis, sediment-water solute exchange, and storage of reactive organic matter near the mouth of the Changjiang, East China Sea[J]. Continental Shelf Research, 1985, 4(1/2): 227−251. [46] 杨建斌. 长江口与黄河口沉积有机碳早期成岩过程的比较研究[D]. 青岛: 中国海洋大学, 2020Yang Jianbin. Comparative study on early diagenetic processes of sedimentary organic carbon in the Changjiang Estuary and the Huanghe Estuary[D]. Qingdao: Ocean University of China, 2020. [47] Aller R C, Blair N E, Brunskill G J. Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea)[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1): F01S09. [48] Aller R C, Heilbrun C, Panzeca C, et al. Coupling between sedimentary dynamics, early diagenetic processes, and biogeochemical cycling in the Amazon–Guianas mobile mud belt: coastal French Guiana[J]. Marine Geology, 2004, 208(2/4): 331−360. [49] Taillefert M, Beckler J S, Cathalot C, et al. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part II-Iron-sulfur coupling[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 142: 151−166. doi: 10.1016/j.dsr2.2017.06.009 [50] Lengier M, Szymczycha B, Brodecka-Goluch A, et al. Benthic diffusive fluxes of organic and inorganic carbon, ammonium and phosphates from deep water sediments of the Baltic Sea[J]. Oceanologia, 2021, 63(3): 370−384. doi: 10.1016/j.oceano.2021.04.002 [51] Nilsson M M, Hylén A, Ekeroth N, et al. Particle shuttling and oxidation capacity of sedimentary organic carbon on the Baltic Sea system scale[J]. Marine Chemistry, 2021, 232: 103963. doi: 10.1016/j.marchem.2021.103963 [52] Kendzierska H, Łukawska-Matuszewska K, Burska D, et al. Benthic fluxes of oxygen and nutrients under the influence of macrobenthic fauna on the periphery of the intermittently hypoxic zone in the Baltic Sea[J]. Journal of Experimental Marine Biology and Ecology, 2020, 530−531: 151439. doi: 10.1016/j.jembe.2020.151439 [53] Berelson W M, McManus J, Severmann S, et al. Benthic fluxes from hypoxia-influenced Gulf of Mexico sediments: impact on bottom water acidification[J]. Marine Chemistry, 2019, 209: 94−106. doi: 10.1016/j.marchem.2019.01.004 [54] Schroller-Lomnitz U, Hensen C, Dale A W, et al. Dissolved benthic phosphate, iron and carbon fluxes in the Mauritanian upwelling system and implications for ongoing deoxygenation[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 143: 70−84. doi: 10.1016/j.dsr.2018.11.008 [55] Bravo F, Grant J. Benthic habitat mapping and sediment nutrient fluxes in a shallow coastal environment in Nova Scotia, Canada[J]. Estuarine, Coastal and Shelf Science, 2020, 242: 106816. doi: 10.1016/j.ecss.2020.106816 [56] De Vittor C, Faganeli J, Emili A, et al. Benthic fluxes of oxygen, carbon and nutrients in the Marano and Grado Lagoon (northern Adriatic Sea, Italy)[J]. Estuarine, Coastal and Shelf Science, 2012, 113: 57−70. doi: 10.1016/j.ecss.2012.03.031 [57] Luo Min, Gieskes J, Chen Linying, et al. Sources, degradation, and transport of organic matter in the new Britain shelf-trench continuum, Papua new Guinea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(6): 1680−1695. doi: 10.1029/2018JG004691 [58] Brüchert V, Bröder L, Sawicka J E, et al. Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment[J]. Biogeosciences, 2018, 15(2): 471−490. doi: 10.5194/bg-15-471-2018 [59] Alongi D M, Wirasantosa S, Wagey T, et al. Early diagenetic processes in relation to river discharge and coastal upwelling in the Aru Sea, Indonesia[J]. Marine Chemistry, 2012, 140−141: 10−23. doi: 10.1016/j.marchem.2012.06.002 [60] Arndt S, Jørgensen B B, Larowe D E, et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis[J]. Earth-Science Reviews, 2013, 123: 53−86. doi: 10.1016/j.earscirev.2013.02.008 [61] Ortega T, Ponce R, Forja J, et al. Benthic fluxes of dissolved inorganic carbon in the Tinto-Odiel system (SW of Spain)[J]. Continental Shelf Research, 2008, 28(3): 458−469. doi: 10.1016/j.csr.2007.10.004 [62] Guo Zhigang, Yang Zuosheng, Fan Dejiang, et al. Seasonal variation of sedimentation in the Changjiang Estuary mud area[J]. Journal of Geographical Sciences, 2003, 13(3): 348−354. doi: 10.1007/BF02837510 [63] Milliman J D, Shen Huangting, Yang Zuosheng, et al. Transport and deposition of river sediment in the Changjiang Estuary and adjacent continental shelf[J]. Continental Shelf Research, 1985, 4(1/2): 37−45.