Energy flow characteristics of the food web in the northern waters of Jiangsu Province based on LIM-MCMC model
-
摘要: 食物网结构特征和能量流动的研究,对于维持海洋生态系统结构和功能的稳定具有重要意义,有助于深入理解海洋生态系统的复杂过程。本研究基于2019−2021年在江苏近海北部海域开展的季节性渔业资源底拖网调查数据,通过构建基于蒙特卡罗马尔科夫链算法的逆线性模型(Linear Inverse Models using a Monte Carlo Method Coupled with Markov Chain, LIM-MCMC),结合生态网络分析(Ecological Network Analysis,ENA)的方法,分析了该海域生态系统状态和食物网能量流动特征,旨在为江苏近海北部海域食物网营养动力学研究提供参考依据。结果表明,该海域生态系统共包含299条能量流动路径,能量流动分布整体呈典型的金字塔结构,各功能群呼吸消耗和流入有机碎屑的能量保持同步性。通过与其他海域比较发现,江苏近海北部海域生态系统的连接指数(Connectance,C)和系统杂食指数(System Omnivory Index,SOI)分别为0.40和0.22,处于较高水平,表明该生态系统不同营养级间的营养联系较为紧密,食物网结构相对复杂,能够在较大程度上抵御外界扰动。总初级生产力/总呼吸(Total Primary Production/Total Respiration,TPP/TR)和Finn’s循环指数(Finn’s Cycling Index,FCI)分别为1.05和5.76%,表明该生态系统对能量利用效率较高。此外,约束效率(Constraint Efficiency,CE)、发展程度(Extent of Development,AC)、协同效应指数(Synergism Index,b/c)和主导间接效应(Dominance Indirect Effects,i/d)也表明该生态系统具有较高的系统发展程度、再生潜力和系统发展空间。本研究将有助于为江苏近海北部海域生态系统的修复和渔业资源的可持续利用提供理论基础,为实施基于生态系统的渔业管理提供科学依据。
-
关键词:
- LIM-MCMC模型 /
- 生态网络分析 /
- 能量流动 /
- 生态系统特征 /
- 食物网
Abstract: Study on the structure and energy flow of food webs is important for maintaining the stability of structure and function of marine ecosystems, which will contribute to the in-depth understanding of the complex processes of marine ecosystems. Based on the seasonal bottom trawl survey data in the northern waters of Jiangsu Province from 2019−2021, a linear inverse models using a Monte Carlo method coupled with Markov chain model combined with ecological network analysis (ENA) were used to explore the status of the ecosystem and energy flow characteristics of the food web in this area. The results showed that there were 299 energy flow paths in the ecosystem, which showed a typical pyramid structure. In addition, the energy consumed by respiration and the energy flowing into the detritus of each functional group remains synchronized. Compared with other sea areas, connectance (C) and system omnivory index (SOI) were 0.40 and 0.22, respectively, which were at relatively high levels, indicating that organisms from different trophic levels in this ecosystem were closely connected. It has a relatively complex food web structure, which can resist external disturbance. Total primary production/total respiration (TPP/TR) and Finn’s cycling index (FCI) were 1.05 and 5.76%, respectively, indicating that the ecosystem was relatively mature and used energy efficiently. In addition, constraint efficiency (CE), extent of development (AC), synergism index (b/c) and dominance indirect effects (i/d) also indicated high potential for development and regeneration. This study will provide a theoretical basis for the restoration and sustainable utilization of fishery resources in the northern waters of Jiangsu Povince, and provide a scientific basis for the implementation of Ecosystem-based fishery management in this area. -
图 2 江苏近海北部海域食物网能量流动特征
G1−G26表示26个功能群;蓝色表示呼吸,灰色表示CO2,番茄色表示第I营养级,橘黄色表示第II −III营养级,红色表示第III− IV营养级,黄色表示第 IV−Ⅴ营养级;圆圈大小表示能量流动值;→表示能量流入方向
Fig. 2 Energy flow characteristics of food webs in northern sea areas of Jiangsu Province
G1−G26 represents 26 functional groups; blue for respiration, gray for CO2, tomato colour for I trophic level, orange colour for II −III trophic level, red trophic level for III− IV trophic level, yellow for IV−Ⅴ trophic level; the magnitude of circle represents the energy flow value;→ indicates the direction of energy flow
表 1 生态网络分析指数
Tab. 1 Ecological network analysis (ENA) indices
生态网络分析指数类型 指数名称 简称 基本指数 生态系统总流量 TST 总呼吸量 TR 流向碎屑的能量 TDET 系统杂食指数 SOI 总初级生产量 TPP 总初级生产力/总呼吸 TPP/TR 总初级生产力/总生物量 TPP/TB 连接数 L 连接指数 C 平均连接权重 TST/L 平均隔间流通量 TST/n 路径分析 总系统循环流量 TSTc 系统非循环总流量 TSTs Finn’s循环指数 FCI 平均路径长度 APL 网络不确定性 平均相互信息 AMI 统计不确定性 HR 条件的不确定性 DR 实现的不确定性 RUR 网络约束 HC 约束效率 CE 系统发展和增长 优势度 A 开发能力 DC 发展程度 AC 环境分析 同质化 HP 协同效应指数 b/c 主导间接效应 i/d 营养和杂食性水平 营养级 TL 杂食指数 OI 表 2 江苏近海北部海域功能群划分及LIM-MCMC模型的基本参数
Tab. 2 Functional groups division and basic parameters of LIM-MCMC model in northern sea areas of Jiangsu Province
功能群 生物量/(t·km−2·a−1) 生产量/生物量(P/B) 消耗量/生物量(Q/B) 排泄量/生物量(U/B) 呼吸量/生物量(R/B) 营养级 杂食指数 G1 长蛇鲻 0.002 1.52 6.00 0.10~0.50 0.50~0.52 4.19 0.242 G2 星康吉鳗 0.002 4.60 7.60 0.10~0.50 0.50~0.52 4.08 0.259 G3 黄鮟鱇 0.001 1.16~1.26 1.40~3.80 0.10~0.50 0.50~0.52 4.31 0.136 G4 虾虎鱼科 0.099 1.59 4.70 0.10~0.50 0.52~0.55 3.39 0.156 G5 鲆鲽类 0.015 0.74~1.46 5.60~16.10 0.10~0.50 0.52~0.55 3.46 0.219 G6 石首鱼科 0.172 1.15~4.60 5.90~9.10 0.10~0.50 0.52~0.55 3.64 0.371 G7 鳀科 0.096 2.37~2.70 5.98 0.10~0.50 0.52~0.55 3.08 0.190 G8 其他底层鱼类 0.079 1.45~2.90 4.23~9.90 0.10~0.50 0.52~0.55 3.36 0.378 G9 其他中上层鱼类 0.023 0.46~2.37 3.10~18.70 0.10~0.50 0.52~0.55 3.25 0.376 G10 近底层鱼类 0.041 0.63~3.26 4.80~9.00 0.10~0.50 0.52~0.55 3.29 0.400 G11 蟹类 0.664 3.50 12.00 0.10~0.50 0.55~0.75 2.90 0.460 G12 口虾蛄 0.726 1.34~8.00 7.43~30.00 0.10~0.50 0.52~0.55 3.20 0.386 G13 戴氏赤虾 0.006 3.90~5.65 15.00~26.90 0.10~0.50 0.52~0.55 3.02 0.301 G14 细鳌虾 0.071 3.75 24.90 0.10~0.50 0.55~0.75 2.66 0.245 G15 鹰爪虾 0.061 1.84 13.00 0.10~0.50 0.55~0.75 2.99 0.154 G16 长臂虾科 0.372 7.69 25.00 0.10~0.50 0.55~0.75 2.88 0.161 G17 其他虾类 0.381 8.00~8.80 28.00~30.00 0.10~0.50 0.55~0.75 2.82 0.112 G18 头足类 0.024 2.00~4.50 7.00~17.00 0.10~0.50 0.52~0.55 3.61 0.466 G19 其他头足类 0.003 4.59 17.55 0.10~0.50 0.52~0.55 3.45 0.198 G20 棘皮动物 0.365 1.20~4.50 3.58~16.70 0.10~0.50 0.55~0.75 2.52 0.301 G21 软体动物 29.869 6.00 27.00 0.10~0.50 0.55~0.75 2.03 0.025 G22 底栖动物 2.944 1.57~5.00 8.60~20.00 0.10~0.50 0.55~0.75 2.03 0.151 G23 尖海龙 0.005 2.30 5.98 0.10~0.50 0.55~0.75 2.85 0.014 G24 浮游动物 2.271 25.00~40.00 122.10~180.03 0.10~0.50 0.70~0.93 2.00 0.014 G25 浮游植物 20.673 106.52 − 0.05~0.50 0.05~0.30 1.00 0.000 G26有机碎屑 51.912 − − − − 1.00 0.000 注:“−”代表无数据。 表 3 江苏近海北部海域食物网各功能群能量流入、流出路径数及比例
Tab. 3 The number and ratio of energy flow paths of each functional group in the food web in northern sea areas of Jiangsu Province
功能群 能量流入
路径数能量流出
路径数占总能流路径
数比例/%G1 长蛇鲻 16 6 7.36 G2 星康吉鳗 19 2 7.02 G3 黄鮟鱇 15 2 5.69 G4 虾虎鱼科 16 12 9.36 G5 鲆鲽类 21 7 9.36 G6 石首鱼科 20 12 10.70 G7 鳀科 7 12 6.35 G8 其他底层鱼类 23 10 11.04 G9 其他中上层鱼类 16 6 7.36 G10 近底层鱼类 11 12 7.69 G11 蟹类 7 15 7.36 G12 口虾蛄 13 11 8.03 G13 戴氏赤虾 4 11 5.02 G14 细鳌虾 2 16 6.02 G15 鹰爪虾 9 9 6.02 G16 长臂虾科 4 8 4.01 G17 其他虾类 11 19 10.03 G18 头足类 13 13 8.70 G19 其他头足类 6 11 5.69 G20 棘皮动物 5 13 6.02 G21 软体动物 2 21 7.69 G22 底栖动物 5 21 8.70 G23 尖海龙 1 2 1.00 G24 浮游动物 2 25 9.03 G25 浮游植物 1 13 4.68 G26有机碎屑 25 7 10.70 表 4 江苏近海北部海域生态网络分析指数
Tab. 4 Ecological network analysis indices in northern sea areas of Jiangsu Province
生态网络分析指数类型 指数名称 值 基本指数 生态系统总流量(TST) 6 345.21 总呼吸量(TR) 1 613.32 流向碎屑的能量(TDET) 749.55 系统杂食性指数(SOI) 0.22 总初级生产量(TPP) 1 695.90 总初级生产量/总呼吸(TPP/TR) 1.05 总初级生产量/总生物量(TPP/TB) 27.30 连接数(L) 299 连接指数(C) 0.40 平均连接权重(TST/L) 21.22 平均隔间流通量(TST/n) 326.22 路径分析 总系统循环流量(TSTc) 365.48 系统非循环总流量(TSTs) 5 979.72 Finn’s循环指数%(FCI) 5.76 平均路径长度(APL) 2.26 网络不确定性 平均相互信息(AMI) 1.64 统计不确定性(HR) 3.14 条件的不确定性(DR) 1.50 实现的不确定性(RUR) 0.52 网络约束(HC) 88.16 约束效率(CE) 0.71 系统发展和增长 优势度(A) 19 009.65 开发能力(DC) 29 428.58 发展程度(AC) 0.65 环境分析 同质化(HP) 1.80 协同效应指数(b/c) 1.12 主导间接效应(i/d) 6.09 表 5 江苏近海北部海域与其他海域生态系统特征参数的比较
Tab. 5 Comparation of characteristic parameters between northern sea areas of Jiangsu Province and other marine ecosystems
表 A1 江苏近海北部海域食物网能量流动路径及其符号含义
Tab. A1 Energy flow paths of food webs and their symbolic meanings in northern sea areas of Jiangsu Province and other marine ecosystems
序号 能量流动路径 序号 能量流动路径 序号 能量流动路径 序号 能量流动路径 序号 能量流动路径 x1 G1→G1 x61 G8→G10 x121 G14→G4 x181 G18→G17 x241 G22→G12 x2 G1→G2 x62 G8→G26 x122 G14→G5 x182 G18→G18 x242 G22→G13 x3 G1→G8 x63 G8→RES x123 G14→G6 x183 G18→G26 x243 G22→G15 x4 G1→G9 x64 G9→G5 x124 G14→G7 x184 G18→RES x244 G22→G16 x5 G1→G26 x65 G9→G8 x125 G14→G8 x185 G19→G2 x245 G22→G17 x6 G1→RES x66 G9→G10 x126 G14→G9 x186 G19→G4 x246 G22→G18 x7 G2→G26 x67 G9→G18 x127 G14→G10 x187 G19→G6 x247 G22→G19 x8 G2→RES x68 G9→G26 x128 G14→G12 x188 G19→G8 x248 G22→G20 x9 G3→G26 x69 G9→RES x129 G14→G15 x189 G19→G9 x249 G22→G26 x10 G3→RES x70 G10→G1 x130 G14→G17 x190 G19→G12 x250 G22→RES x11 G4→G1 x71 G10→G2 x131 G14→G18 x191 G19→G15 x251 G23→G26 x12 G4→G2 x72 G10→G4 x132 G14→G19 x192 G19→G16 x252 G23→RES x13 G4→G3 x73 G10→G5 x133 G14→G26 x193 G19→G18 x253 G24→G1 x14 G4→G4 x74 G10→G6 x134 G14→RES x194 G19→G26 x254 G24→G3 x15 G4→G5 x75 G10→G8 x135 G15→G1 x195 G19→RES x255 G24→G4 x16 G4→G6 x76 G10→G9 x136 G15→G2 x196 G20→G1 x256 G24→G5 x17 G4→G8 x77 G10→G10 x137 G15→G3 x197 G20→G2 x257 G24→G6 x18 G4→G9 x78 G10→G12 x138 G15→G5 x198 G20→G4 x258 G24→G7 x19 G4→G11 x79 G10→G18 x139 G15→G6 x199 G20→G5 x259 G24→G8 x20 G4→G12 x80 G10→G26 x140 G15→G7 x200 G20→G6 x260 G24→G9 x21 G4→G26 x81 G10→RES x141 G15→G8 x201 G20→G8 x261 G24→G10 x22 G4→RES x82 G11→G2 x142 G15→G26 x202 G20→G9 x262 G24→G11 x23 G5→G3 x83 G11→G3 x143 G15→RES x203 G20→G12 x263 G24→G12 x24 G5→G5 x84 G11→G4 x144 G16→G2 x204 G20→G13 x264 G24→G13 x25 G5→G6 x85 G11→G5 x145 G16→G4 x205 G20→G17 x265 G24→G14 x26 G5→G8 x86 G11→G6 x146 G16→G5 x206 G20→G20 x266 G24→G15 x27 G5→G9 x87 G11→G8 x147 G16→G6 x207 G20→G26 x267 G24→G16 x28 G5→G26 x88 G11→G9 x148 G16→G8 x208 G20→RES x268 G24→G17 x29 G5→RES x89 G11→G11 x149 G16→G18 x209 G21→G1 x269 G24→G18 x30 G6→G1 x90 G11→G12 x150 G16→G26 x210 G21→G2 x270 G24→G19 x31 G6→G2 x91 G11→G15 x151 G16→RES x211 G21→G3 x271 G24→G20 x32 G6→G3 x92 G11→G17 x152 G17→G1 x212 G21→G4 x272 G24→G21 x33 G6→G5 x93 G11→G19 x153 G17→G2 x213 G21→G5 x273 G24→G22 x34 G6→G6 x94 G11→G22 x154 G17→G3 x214 G21→G6 x274 G24→G23 x35 G6→G8 x95 G11→G26 x155 G17→G4 x215 G21→G7 x275 G24→G24 x36 G6→G11 x96 G11→RES x156 G17→G5 x216 G21→G8 x276 G24→G26 x37 G6→G12 x97 G12→G2 x157 G17→G6 x217 G21→G9 x277 G24→RES x38 G6→G15 x98 G12→G4 x158 G17→G7 x218 G21→G10 x278 G25→G3 x39 G6→G18 x99 G12→G5 x159 G17→G8 x219 G21→G11 x279 G25→G4 x40 G6→G26 x100 G12→G6 x160 G17→G9 x220 G21→G12 x280 G25→G5 x41 G6→RES x101 G12→G8 x161 G17→G10 x221 G21→G13 x281 G25→G8 x42 G7→G1 x102 G12→G12 x162 G17→G11 x222 G21→G15 x282 G25→G9 x43 G7→G2 x103 G12→G17 x163 G17→G12 x223 G21→G16 x283 G25→G14 x44 G7→G3 x104 G12→G18 x164 G17→G15 x224 G21→G17 x284 G25→G17 x45 G7→G4 x105 G12→G19 x165 G17→G17 x225 G21→G18 x285 G25→G20 x46 G7→G5 x106 G12→G26 x166 G17→G18 x226 G21→G20 x286 G25→G21 x47 G7→G6 x107 G12→RES x167 G17→G19 x227 G21→G22 x287 G25→G22 x48 G7→G8 x108 G13→G1 x168 G17→G22 x228 G21→G26 x288 G25→G24 x49 G7→G9 x109 G13→G2 x169 G17→G26 x229 G21→RES x289 G25→G26 x50 G7→G10 x110 G13→G3 x170 G17→RES x230 G22→G1 x290 G25→RES x51 G7→G18 x111 G13→G4 x171 G18→G1 x231 G22→G2 x291 G26→G1 x52 G7→G26 x112 G13→G5 x172 G18→G2 x232 G22→G3 x292 G26→G2 x53 G7→RES x113 G13→G6 x173 G18→G3 x233 G22→G4 x293 G26→G3 x54 G8→G1 x114 G13→G7 x174 G18→G5 x234 G22→G5 x294 G26→G4 x55 G8→G2 x115 G13→G8 x175 G18→G6 x235 G22→G6 x295 G26→G5 x56 G8→G3 x116 G13→G10 x176 G18→G8 x236 G22→G7 x296 G26→G5 x57 G8→G5 x117 G13→G26 x177 G18→G9 x237 G22→G8 x297 G26→G8 x58 G8→G6 x118 G13→RES x178 G18→G10 x238 G22→G9 x298 G26→G17 x59 G8→G8 x119 G14→G1 x179 G18→G12 x239 G22→G10 x299 CO2→G25 x60 G8→G9 x120 G14→G2 x180 G18→G15 x240 G22→G11 注:G1. 长蛇鲻;G2. 星康吉鳗;G3. 黄鮟鱇;G4. 虾虎鱼科;G5. 鲆鲽类;G6. 石首鱼科;G7. 鳀科;G8. 其他底层鱼类;G9. 其他中上层鱼类;G10. 近底层鱼类;G11. 蟹类;G12. 口虾蛄; G13. 戴氏赤虾;G14. 细鳌虾;G15. 鹰爪虾;G16. 长臂虾科;G17. 其他虾类;G18. 头足类;G19. 其他头足类;G20. 棘皮动物;G21. 软体动物;G22. 底栖动物;G23. 尖海龙;G24. 浮游动物;G25. 浮游植物;G26. 有机碎屑;RES. 呼吸。 -
[1] 刘尊雷, 程家骅, 李圣法, 等. 江苏近岸海域鱼类群落结构的变化[J]. 中国水产科学, 2009, 16(2): 274−281. doi: 10.3321/j.issn:1005-8737.2009.02.016Liu Zunlei, Cheng Jiahua, Li Shengfa, et al. Changes of fish community structure in Jiangsu, China offshore areas[J]. Journal of Fishery Sciences of China, 2009, 16(2): 274−281. doi: 10.3321/j.issn:1005-8737.2009.02.016 [2] 田丰歌, 徐兆礼. 春夏季苏北浅滩大丰水域浮游动物生态特征[J]. 海洋环境科学, 2011, 30(3): 316−320. doi: 10.3969/j.issn.1007-6336.2011.03.003Tian Fengge, Xu Zhaoli. Ecological characters of zooplankton in middle area of Subei Shoal in spring and summer[J]. Marine Environmental Science, 2011, 30(3): 316−320. doi: 10.3969/j.issn.1007-6336.2011.03.003 [3] Vasslides J M, Jensen O P. Quantitative vs. Semiquantitative ecosystem models: comparing alternate representations of an estuarine ecosystem[J]. Journal of Coastal Research, 2017, 78(10078): 287−296. [4] 任晓明, 刘阳, 徐宾铎, 等. 基于Ecopath模型的海州湾及邻近海域生态系统结构研究[J]. 海洋学报, 2020, 42(6): 101−109.Ren Xiaoming, Liu Yang, Xu Binduo, et al. Ecosystem structure in the Haizhou Bay and adjacent waters based on Ecopath model[J]. Haiyang Xuebao, 2020, 42(6): 101−109. [5] 徐从军, 隋昊志, 徐宾铎, 等. 基于LIM-MCMC模型研究海州湾食物网能量流动特征[J]. 中国水产科学, 2021, 28(1): 66−78.Xu Congjun, Sui Haozhi, Xu Binduo, et al. Energy flows in the Haizhou Bay food web based on the LIM-MCMC model[J]. Journal of Fishery Sciences of China, 2021, 28(1): 66−78. [6] Malaterre C, Dussault A C, Rousseau-Mermans S, et al. Functional diversity: an epistemic roadmap[J]. BioScience, 2019, 69(10): 800−811. doi: 10.1093/biosci/biz089 [7] Vézina A F, Platt T. Food web dynamics in the ocean. I. Best-estimates of flow networks using inverse methods[J]. Marine Ecology Progress Series, 1988, 42(3): 269−287. [8] Niquil N, Saint-Béat B, Johnson G A, et al. Inverse modeling in modern ecology and application to coastal ecosystems[J]. Treatise on Estuarine and Coastal Science, 2011, 9: 115−133. [9] Kones J K, Soetaert K, Van Oevelen D, et al. Gaining insight into food webs reconstructed by the inverse method[J]. Journal of Marine Systems, 2006, 60(1/2): 153−166. [10] Johnson R W, McElhaney J. Postherpetic neuralgia in the elderly[J]. The International Journal of Clinical Practice, 2009, 63(9): 1386−1391. doi: 10.1111/j.1742-1241.2009.02089.x [11] Savenkoff C, Castonguay M, Chabot D, et al. Changes in the northern Gulf of St. Lawrence ecosystem estimated by inverse modelling: evidence of a fishery-induced regime shift?[J]. Estuarine, Coastal and Shelf Science, 2007, 73(3/4): 711−724. [12] Chaalali A, Saint-Béat B, Lassalle G, et al. A new modeling approach to define marine ecosystems food-web status with uncertainty assessment[J]. Progress in Oceanography, 2015, 135: 37−47. doi: 10.1016/j.pocean.2015.03.012 [13] Nogues Q, Raoux A, Araignous E, et al. Cumulative effects of marine renewable energy and climate change on ecosystem properties: sensitivity of ecological network analysis[J]. Ecological Indicators, 2021, 121: 107128. doi: 10.1016/j.ecolind.2020.107128 [14] Tecchio S, Chaalali A, Raoux A, et al. Evaluating ecosystem-level anthropogenic impacts in a stressed transitional environment: the case of the Seine Estuary[J]. Ecological Indicators, 2016, 61: 833−845. doi: 10.1016/j.ecolind.2015.10.036 [15] Van Oevelen D, Van den Meersche K, Meysman F J R, et al. Quantifying food web flows using linear inverse models[J]. Ecosystems, 2010, 13(1): 32−45. doi: 10.1007/s10021-009-9297-6 [16] 欧阳力剑, 郭学武. 东、黄海主要鱼类Q/B值与种群摄食量研究[J]. 渔业科学进展, 2010, 31(2): 23−29. doi: 10.3969/j.issn.1000-7075.2010.02.004Ouyang Lijian, Guo Xuewu. Studies on the Q/B values and food consumption of major fishes in the East China Sea and the Yellow Sea[J]. Progress in Fishery Sciences, 2010, 31(2): 23−29. doi: 10.3969/j.issn.1000-7075.2010.02.004 [17] 林群, 王俊, 李忠义, 等. 黄河口邻近水域贝类生态容量[J]. 应用生态学报, 2018, 29(9): 3131−3138. doi: 10.13287/j.1001-9332.201809.039Lin Qun, Wang Jun, Li Zhongyi, et al. Ecological carrying capacity of shellfish in the Yellow River Estuary and its adjacent waters[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 3131−3138. doi: 10.13287/j.1001-9332.201809.039 [18] 张硕, 王腾, 符小明, 等. 连云港海州湾渔业生态修复水域生态系统能量流动模型初探[J]. 海洋环境科学, 2015, 34(1): 42−47. doi: 10.13634/j.cnki.mes.2015.01.008Zhang Shuo, Wang Teng, Fu Xiaoming, et al. A primary study on the energy flow in the ecosystem of fishery ecological restoration area in Haizhou Bay, Lianyungang[J]. Marine Environmental Science, 2015, 34(1): 42−47. doi: 10.13634/j.cnki.mes.2015.01.008 [19] 王腾, 张贺, 张虎, 等. 基于营养通道模型的海州湾中国明对虾生态容纳量[J]. 中国水产科学, 2016, 23(4): 965−975.Wang Teng, Zhang He, Zhang Hu, et al. Ecological carrying capacity of Chinese shrimp stock enhancement in Haizhou Bay of East China based on Ecopath model[J]. Journal of Fishery Sciences of China, 2016, 23(4): 965−975. [20] 徐超, 王思凯, 赵峰, 等. 基于Ecopath模型的长江口生态系统营养结构和能量流动研究[J]. 海洋渔业, 2018, 40(3): 309−318. doi: 10.3969/j.issn.1004-2490.2018.03.006Xu Chao, Wang Sikai, Zhao Feng, et al. Trophic structure and energy flow of the Yangtze Estuary ecosystem based on the analysis with Ecopath model[J]. Marine Fisheries, 2018, 40(3): 309−318. doi: 10.3969/j.issn.1004-2490.2018.03.006 [21] 王远超, 梁翠, 线薇微, 等. 基于生态通道模型的长江口及邻近海域生态系统能流动态分析[J]. 海洋科学, 2018, 42(5): 54−67. doi: 10.11759/hykx20170816001Wang Yuanchao, Liang Cui, Xian Weiwei, et al. Ecopath based dynamic analyses of energy flows of Yangtze Estuary and its adjacent waters[J]. Marine Sciences, 2018, 42(5): 54−67. doi: 10.11759/hykx20170816001 [22] 王玮, 王俊杰, 左平, 等. 基于Ecopath模型的西南黄海生态系统结构和能量流动分析[J]. 应用海洋学学报, 2019, 38(4): 528−539. doi: 10.3969/J.ISSN.2095-4972.2019.04.008Wang Wei, Wang Junjie, Zuo Ping, et al. Analysis of structure and energy flow in southwestern Yellow Sea ecosystem based on Ecopath model[J]. Journal of Applied Oceanography, 2019, 38(4): 528−539. doi: 10.3969/J.ISSN.2095-4972.2019.04.008 [23] Han Dongyan, Xue Ying, Zhang Chongliang, et al. A mass balanced model of trophic structure and energy flows of a semi-closed marine ecosystem[J]. Acta Oceanologica Sinica, 2017, 36(10): 60−69. doi: 10.1007/s13131-017-1071-6 [24] Hoshiba Y, Hirata T, Shigemitsu M, et al. Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific[J]. Ocean Science, 2018, 14(3): 371−386. doi: 10.5194/os-14-371-2018 [25] 林群, 金显仕, 张波, 等. 基于营养通道模型的渤海生态系统结构十年变化比较[J]. 生态学报, 2009, 29(7): 3613−3620.Lin Qun, Jin Xianshi, Zhang Bo, et al. Comparative study on the changes of the Bohai Sea ecosystem structure based on Ecopath model between ten years[J]. Acta Ecologica Sinica, 2009, 29(7): 3613−3620. [26] 程济生, 朱金声. 黄海主要经济无脊椎动物摄食特征及其营养层次的研究[J]. 海洋学报, 1997, 19(6): 102−108.Cheng Jisheng, Zhu Jinsheng. The study on feeding characteristics and trophic levels of main economic invertebrates in the Yellow Sea[J]. Haiyang Xuebao, 1997, 19(6): 102−108. [27] 杨纪明. 渤海鱼类的食性和营养级研究[J]. 现代渔业信息, 2001, 16(10): 10−19.Yang Jiming. A study on food and trophic levels of Baohai Sea fish[J]. Modern Fisheries Information, 2001, 16(10): 10−19. [28] Froese R, Pauly D. FishBase. World Wide Web electronic publication[EB/OL]. [2023−02−17]. http://www.fishbase.org. [29] Soetaert K, Van Oevelen D. LIM: linear inverse model examples and solution methods[EB/OL]. [2022−05−11]. https://cran.r-project.org/web/packages/LIM/index.html. [30] Soetaert K, Van den Meersche K, Van Oevelen D, et al. limSolve: solving linear inverse models[EB/OL]. [2022−10−13]. https://cran.r-project.org/web//packages/limSolve/limSolve.pdf. [31] Saint-Béat B, Vézina A F, Asmus R, et al. The mean function provides robustness to linear inverse modelling flow estimation in food webs: a comparison of functions derived from statistics and ecological theories[J]. Ecological Modelling, 2013, 258: 53−64. doi: 10.1016/j.ecolmodel.2013.01.023 [32] Proulx S R, Promislow D E L, Phillips P C. Network thinking in ecology and evolution[J] Trends in Ecology & Evolution, 2005, 20(6): 345−353. [33] Heymans J J, Guénette S, Christensen V. Evaluating network analysis indicators of ecosystem status in the gulf of Alaska[J]. Ecosystems, 2007, 10(3): 488−502. doi: 10.1007/s10021-007-9034-y [34] Latham II L G. Network flow analysis algorithms[J]. Ecological Modelling, 2006, 192(3/4): 586−600. [35] Odum E P. The strategy of ecosystem development: an understanding of ecological succession provides a basis for resolving man’s conflict with nature[J]. Science, 1969, 164(3877): 262−270. doi: 10.1126/science.164.3877.262 [36] 陈作志, 邱永松. 南海北部生态系统食物网结构、能量流动及系统特征[J]. 生态学报, 2010, 30(18): 4855−4865.Chen Zuozhi, Qiu Yongsong. Assessment of the food-web structure, energy flows, and system attribute of northern South China Sea ecosystem[J]. Acta Ecologica Sinica, 2010, 30(18): 4855−4865. [37] Finn J T. Flow analysis of models of the Hubbard Brook ecosystem[J]. Ecology, 1980, 61(3): 562−571. doi: 10.2307/1937422 [38] Latham II L G, Scully E P. Quantifying constraint to assess development in ecological networks[J]. Ecological Modelling, 2002, 154(1/2): 25−44. [39] Ulanowicz R E. Ascendency: a measure of ecosystem performance[M]//Jørgensen S E, Müeller F. Handbook of Ecosystem Theories and Management. Boca Raton: Lewis Publishers, 2000: 303−315. [40] Fath B D. Distributed control in ecological networks[J]. Ecological Modelling, 2004, 179(2): 235−245. doi: 10.1016/j.ecolmodel.2004.06.007 [41] 李永刚, 汪振华, 章守宇. 嵊泗人工鱼礁海区生态系统能量流动模型初探[J]. 海洋渔业, 2007, 29(3): 226−234. doi: 10.3969/j.issn.1004-2490.2007.03.006Li Yonggang, Wang Zhenhua, Zhang Shouyu. A preliminary approach on the ecosystem model of the artificial reef in Shengsi[J]. Marine Fisheries, 2007, 29(3): 226−234. doi: 10.3969/j.issn.1004-2490.2007.03.006 [42] 赵静, 章守宇, 许敏. 枸杞海藻场生态系统能量流动模型初探[J]. 上海海洋大学学报, 2010, 19(1): 98−104.Zhao Jing, Zhang Shouyu, Xu Min. The primary research of the energy flow in Gouqi kelp bed ecosystem[J]. Journal of Shanghai Ocean University, 2010, 19(1): 98−104. [43] Tong Ling, Tang Qisheng, Pauly D. A preliminary approach on mass-balance ecopath model of the Bohai Sea[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 435−440. [44] Navia A F, Maciel-Zapata S R, González-Acosta A F, et al. Importance of weak trophic interactions in the structure of the food web in La Paz Bay, southern Gulf of California: a topological approach[J]. Bulletin of Marine Science, 2019, 95(2): 199−215. doi: 10.5343/bms.2018.0043 [45] Parmesan C. Ecological and evolutionary responses to recent climate change[J]. Annual Review of Ecology Evolution, and Systematics, 2006, 37: 637−669. doi: 10.1146/annurev.ecolsys.37.091305.110100 [46] Planque B, Primicerio R, Michalsen K, et al. Who eats whom in the Barents Sea: a food web topology from plankton to whales[J]. Ecology, 2014, 95(5): 1430. doi: 10.1890/13-1062.1 [47] Benoit D M, Jackson D A, Chu C. Partitioning fish communities into guilds for ecological analyses: an overview of current approaches and future directions[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78(7): 984−993. doi: 10.1139/cjfas-2020-0455