Numerical study on infragravity wave hydrodynamics of permeable fringing reef
-
摘要: 基于非静压单相流模型(NHWAVE),对随机波浪在透水珊瑚岸礁上传播过程进行了数值模拟,综合考虑入射波高、礁坪水深、谱峰周期、透水层厚度、透水层孔隙率以及颗粒的中值粒径等因素对岸礁波浪水动力特性的影响,重点分析了短波波高、低频长波波高、平均水位的沿礁变化,并与无透水层的岸礁情况进行了对比。研究表明:透水层的存在减弱了波浪在礁前斜坡的浅水变形和在礁缘附近的波浪破碎,显著降低了岸线附近的短波波高、低频长波波高以及波浪增水值,除此之外,透水层的存在会降低波浪在岸滩的最大爬高;透水层的孔隙率和颗粒的中值粒径对波浪传播变形特征的影响可忽略不计;入射波高和谱峰周期越大,岸礁透水层对短波、长波及波浪增水的影响越显著;当增大礁坪水深时,透水层对波浪的消减作用减弱;随着透水层厚度的增大,岸线附近的短波波高、长波波高和波浪增水值随之减小。
-
关键词:
- 透水岸礁 /
- 传播变形 /
- 低频长波 /
- 波浪增水 /
- 非静压单相流模型(NHWAVE)
Abstract: Based on the nonhydrostatic single-phase flow numerical wave model (NHWAVE), the propagation of random waves on a permeable fringing reef is simulated numerically, and the effects of incident wave height, water depth on reef flat, spectrum peak period, thickness of permeable layer, porosity and median diameters the hydrodynamic characteristics of waves on the fringing reef are considered comprehensively, focusing on the variation of sea-swell wave height, infragravity wave height and mean water level along the reef, and comparing with that of the fringing reef without permeable layer. The study shows that the existence of the permeable layer has a significant impact on the hydrodynamic characteristics of waves on the fringing reef. The study shows that the existence of the permeable layer reduces the shallow water deformation of waves on the slope in front of the reef and the wave breaking near the reef edge, and significantly decreases the sea-swell wave height, infragravity wave height, and wave setup near the shoreline, in addition to that, the existence of the permeable layer reduces the maximum wave runup on the shoreline. The greater the incident wave height and spectrum peak period, the more significant the effect of the permeable layer on the sea-swell wave, infragravity wave and wave setup on the fringing reef; when the water depth of the reef is increased, the effect of the permeable layer on wave attenuation is weakened; as the thickness of the permeable layer increases, the values of sea-swell wave height, infragravity wave height and wave setup near the shoreline decrease. -
表 1 验证工况
Tab. 1 Validation working conditions
工况 Hs/m hr/m Tp/s A 0.095 0.10 1.25 B 0.101 0.0 1.0 注:Hs为有效波高,hr为礁坪水深,Tp为谱峰周期。 表 2 数值模拟工况设置
Tab. 2 Case setup of numerical simulation
工况 有效波高Hs/m 礁坪水深hr/m 谱峰周期Tp/s 透水层厚度d/m 孔隙率n 中值粒径D50/m A1 0.043 3 0.05 1.25 0 0 0 A2 0.064 95 0.05 1.25 0 0 0 A3 0.086 6 0.05 1.25 0 0 0 A4 0.108 25 0.05 1.25 0 0 0 A5 0.129 9 0.05 1.25 0 0 0 B1 0.043 3 0.05 1.25 0.05 0.78 0.027 B2 0.064 95 0.05 1.25 0.05 0.78 0.027 B3 0.086 6 0.05 1.25 0.05 0.78 0.027 B4 0.108 25 0.05 1.25 0.05 0.78 0.027 B5 0.129 9 0.05 1.25 0.05 0.78 0.027 C1 0.086 6 0 1.25 0 0 0 C2 0.086 6 0.025 1.25 0 0 0 C3 0.086 6 0.075 1.25 0 0 0 C4 0.086 6 0.10 1.25 0 0 0 D1 0.086 6 0 1.25 0.05 0.78 0.027 D2 0.086 6 0.025 1.25 0.05 0.78 0.027 D3 0.086 6 0.075 1.25 0.05 0.78 0.027 D4 0.086 6 0.10 1.25 0.05 0.78 0.027 E1 0.086 6 0.05 0.75 0 0 0 E2 0.086 6 0.05 1.0 0 0 0 E3 0.086 6 0.05 1.5 0 0 0 E4 0.086 6 0.05 1.75 0 0 0 E4 0.086 6 0.05 2.0 0 0 0 F1 0.086 6 0.05 0.75 0.05 0.78 0.027 F2 0.086 6 0.05 1.0 0.05 0.78 0.027 F3 0.086 6 0.05 1.5 0.05 0.78 0.027 F4 0.086 6 0.05 1.75 0.05 0.78 0.027 F5 0.086 6 0.05 2.0 0.05 0.78 0.027 G1 0.086 6 0.05 1.25 0 0.78 0.027 G2 0.086 6 0.05 1.25 0.025 0.78 0.027 G3 0.086 6 0.05 1.25 0.75 0.78 0.027 G4 0.086 6 0.05 1.25 0.10 0.78 0.027 H1 0.086 6 0.05 1.25 0.05 0.66 0.027 H2 0.086 6 0.05 1.25 0.05 0.70 0.027 H3 0.086 6 0.05 1.25 0.05 0.74 0.027 H4 0.086 6 0.05 1.25 0.05 0.82 0.027 H5 0.086 6 0.05 1.25 0.05 0.86 0.027 I1 0.086 6 0.05 1.25 0.05 0.78 0.012 I2 0.086 6 0.05 1.25 0.05 0.78 0.017 I3 0.086 6 0.05 1.25 0.05 0.78 0.022 I4 0.086 6 0.05 1.25 0.05 0.78 0.032 I5 0.086 6 0.05 1.25 0.05 0.78 0.037 -
[1] 赵焕庭. 中国现代珊瑚礁研究[J]. 世界科技研究与发展, 1998, 20(4): 98−105. doi: 10.16507/j.issn.1006-6055.1998.04.032Zhao Huanting. Research on modern coral reefs in China[J]. World Sci-Tech R & D, 1998, 20(4): 98−105. doi: 10.16507/j.issn.1006-6055.1998.04.032 [2] Brander R W, Kench P S, Hart D. Spatial and temporal variations in wave characteristics across a reef platform, Warraber Island, Torres Strait, Australia[J]. Marine Geology, 2004, 207(1/4): 169−184. [3] Young I R. Wave transformation over coral reefs[J]. Journal of Geophysical Research: Oceans, 1989, 94(C7): 9779−9789. doi: 10.1029/JC094iC07p09779 [4] Munk W H, Sargent M C. Adjustment of Bikini Atoll to ocean waves[J]. Eos, Transactions American Geophysical Union, 1948, 29(6): 855−860. doi: 10.1029/TR029i006p00855 [5] Tait R J. Wave set-up on coral reefs[J]. Journal of Geophysical Research, 1972, 77(12): 2207−2211. doi: 10.1029/JC077i012p02207 [6] Lentz S J, Churchill J H, Davis K A, et al. Surface gravity wave transformation across a platform coral reef in the Red Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 693−705. doi: 10.1002/2015JC011142 [7] 梅弢, 高峰. 波浪在珊瑚礁坪上传播的水槽试验研究[J]. 水道港口, 2013, 34(1): 13−18. doi: 10.3969/j.issn.1005-8443.2013.01.003Mei Tao, Gao Feng. Flume experiment research on law of wave propagation in reef flat[J]. Journal of Waterway and Harbor, 2013, 34(1): 13−18. doi: 10.3969/j.issn.1005-8443.2013.01.003 [8] 刘宁. 波浪在岛礁地形上传播特性的试验研究[D]. 大连: 大连理工大学, 2014.Liu Ning. Experimental research on wave propagation characteristics under reef terrain[D]. Dalian: Dalian University of Technology, 2014. [9] 贾美军, 姚宇, 陈松贵, 等. 防浪建筑物影响下珊瑚礁海岸波浪传播变形试验[J]. 海洋工程, 2020, 38(6): 53−59, 123. doi: 10.16483/j.issn.1005-9865.2020.06.006Jia Meijun, Yao Yu, Chen Songgui, et al. Laboratory study of wave transformation around reef coasts under effects of breakwaters[J]. The Ocean Engineering, 2020, 38(6): 53−59, 123. doi: 10.16483/j.issn.1005-9865.2020.06.006 [10] Gourlay M R. Wave transformation on a coral reef[J]. Coastal Engineering, 1994, 23(1/2): 17−42. [11] 任冰, 唐洁, 王国玉, 等. 规则波在岛礁地形上传播变化特性的试验[J]. 科学通报, 2018, 63(5/6): 590−600.Ren Bing, Tang Jie, Wang Guoyu, et al. Experimental investigation of monochromatic wave transformation characteristics over the coral reefs[J]. Chinese Science Bulletin, 2018, 63(5/6): 590−600. [12] 陈松贵, 张华庆, 陈汉宝, 等. 不规则波在筑堤珊瑚礁上传播的大水槽实验研究[J]. 海洋通报, 2018, 37(5): 576−582. doi: 10.11840/j.issn.1001-6392.2018.05.011Chen Songgui, Zhang Huaqing, Chen Hanbao, et al. Experimental study of irregular wave transformation on reefs with seawalls in large wave flume[J]. Marine Science Bulletin, 2018, 37(5): 576−582. doi: 10.11840/j.issn.1001-6392.2018.05.011 [13] Su S F, Ma Gangfeng, Hsu T W. Boussinesq modeling of spatial variability of infragravity waves on fringing reefs[J]. Ocean Engineering, 2015, 101: 78−92. doi: 10.1016/j.oceaneng.2015.04.022 [14] Su S F, Ma Gangfeng. Modeling two-dimensional infragravity motions on a fringing reef[J]. Ocean Engineering, 2018, 153: 256−267. doi: 10.1016/j.oceaneng.2018.01.111 [15] Van Dongeren A P, Lowe R, Pomeroy A, et al. Numerical modeling of low-frequency wave dynamics over a fringing coral reef[J]. Coastal Engineering, 2013, 73: 178−190. doi: 10.1016/j.coastaleng.2012.11.004 [16] Yao Yu, Zhang Qiming, Becker J M, et al. Boussinesq modeling of wave processes in field fringing reef environments[J]. Applied Ocean Research, 2020, 95: 102025. doi: 10.1016/j.apor.2019.102025 [17] Liu Weijie, Shao Keqi, Ning Yue, et al. Numerical study of the impact of climate change on irregular wave run-up over reef-fringed coasts[J]. China Ocean Engineering, 2020, 34(2): 162−171. doi: 10.1007/s13344-020-0016-6 [18] 张善举. 波浪在珊瑚礁地形上传播、破碎与增水的数学模型的研究[D]. 广州: 华南理工大学, 2019.Zhang Shanju. Study on the numerical model for wave propagation, breaking and setup on coral reef[D]. Guangzhou: South China University of Technology, 2019. [19] Cabioch G, Hopley D, Davies P, et al. Encyclopedia of Modern Coral Reefs: Structure, Form and Process[M]. Dordrecht, Nether-lands: Springer Science & Business Media, 2010. [20] Hearn C J. Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level[J]. Journal of Geophysical Research: Oceans, 1999, 104(C12): 30007−30019. doi: 10.1029/1999JC900262 [21] Lowe R J, Shavit U, Falter J L, et al. Modeling flow in coral communities with and without waves: a synthesis of porous media and canopy flow approaches[J]. Limnology and Oceanography, 2008, 53(6): 2668−2680. doi: 10.4319/lo.2008.53.6.2668 [22] Zhu Gancheng, Ren Bing, Wen Hongjie, et al. Analytical and experimental study of wave setup over permeable coral reef[J]. Applied Ocean Research, 2019, 90: 101859. doi: 10.1016/j.apor.2019.101859 [23] Qu Ke, Liu Tiewei, Chen Long, et al. Study on transformation and runup processes of tsunami-like wave over permeable fringing reef using a nonhydrostatic numerical wave model[J]. Ocean Engineering, 2022, 243: 110228. doi: 10.1016/j.oceaneng.2021.110228 [24] Wen Hongjie, Ren Bing, Dong Ping, et al. Numerical analysis of wave-induced current within the inhomogeneous coral reef using a refined SPH model[J]. Coastal Engineering, 2020, 156: 103616. doi: 10.1016/j.coastaleng.2019.103616 [25] Van Gent M R A. The modelling of wave action on and in coastal structures[J]. Coastal Engineering, 1994, 22(3/4): 311−339. [26] Liu P L F, Lin Pengzhi, Chang Kuang’an, et al. Numerical modeling of wave interaction with porous structures[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1999, 125(6): 322−330. doi: 10.1061/(ASCE)0733-950X(1999)125:6(322) [27] Ma Gangfeng, Shi Fengyan, Hsiao S C, et al. Non-hydrostatic modeling of wave interactions with porous structures[J]. Coastal Engineering, 2014, 91: 84−98. doi: 10.1016/j.coastaleng.2014.05.004 [28] Rodi W. Examples of calculation methods for flow and mixing in stratified fluids[J]. Journal of Geophysical Research: Oceans, 1987, 92(C5): 5305−5328. doi: 10.1029/JC092iC05p05305 [29] Hsu T J, Sakakiyama T, Liu P L F. A numerical model for wave motions and turbulence flows in front of a composite breakwater[J]. Coastal Engineering, 2002, 46(1): 25−50. doi: 10.1016/S0378-3839(02)00045-5 [30] Nakayama A, Kuwahara F. A macroscopic turbulence model for flow in a porous medium[J]. ASME Journal of Fluids Engineering, 1999, 121(2): 427−433. doi: 10.1115/1.2822227 [31] Ma Gangfeng, Kirby J T, Shi Fengyan. Non-hydrostatic wave model NHWAVE: documentation and user’s manual (version 2.0)[R]. Norfolk, Virginia: Department of Civil and Environmental Engineering, Old Dominion University, 2014. [32] Warner J C, Geyer W R, Lerczak J A. Numerical modeling of an estuary: a comprehensive skill assessment[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05001. [33] Willmott C J. On the validation of models[J]. Physical Geography, 1981, 2(2): 184−194. doi: 10.1080/02723646.1981.10642213 [34] Yao Yu, Liu Yicheng, Chen Long, et al. Study on the wave-driven current around the surf zone over fringing reefs[J]. Ocean Engineering, 2020, 198: 106968. doi: 10.1016/j.oceaneng.2020.106968