Sources of local dense shelf water near the Cape Darnley fast ice in Prydz Bay, Antarctica
-
摘要: 本文采用固定冰数据集和南极象海豹获取的现场观测数据集,分析了南极达恩利角固定冰附近局地高密陆架水的变化。结果表明:首先,达恩利角固定冰存在显著季节变化,对于达恩利角冰间湖及局地高密陆架水的生成都具有重要影响。其次,达恩利角固定冰在2000−2014年期间年际变化很小,无显著增减趋势。第三,达恩利角固定冰附近局地高密陆架水有两个显著来源:(1)3−4月,达恩利角固定冰快速生成时伴随着强烈的盐析作用,进而局地生成高密陆架水;(2)5月,达恩利角固定冰达到最大范围,局地盐析作用减弱至很小,而上游在冰架水抑制作用减弱后,麦肯基湾冰间湖海域的高密陆架水生成增强,能够向西北输运至达恩利角固定冰附近。本研究初步证明达恩利角固定冰除了维持达恩利角冰间湖存在的作用外,对局地高密陆架水生成也可能有重要影响,同时指出一条重要的水团输运路径,这有助于提高对达恩利角附近冰−海相互作用的理解,对该地区开展更多观测或模拟研究是必要的。Abstract: In this paper, we analyze the variation of local dense shelf water around the Cape Darnley fast ice by using a landfast ice dataset and in-situ observation data of Antarctic elephant seals. The results show that: firstly, there are significant seasonal variations of Cape Darnley fast ice, which has a vital impact on the formation of the Cape Darnley polynya and the local dense shelf water. Secondly, the interannual variation of Cape Darnley fast ice is minimal from 2000 to 2014, with no significant trend of increasing or decreasing. Thirdly, we identify two significant sources of local dense shelf water near the Cape Darnley fast ice area: (1) dense shelf water produced by the strong brine rejection process during the rapid generation of Cape Darnley fast ice from March to April; (2) Cape Darnley fast ice reaching its maximum extent and local brine rejection being reduced to a minimum in May. After the weakening of the inhibition of ice shelf water, the formation of dense shelf water in the upstream MacKenzie Bay polynya is enhanced and transported northwest to the vicinity of the Cape Darnley fast ice. In this study, we preliminarily demonstrates that, in addition to maintaining Cape Darnley polynya, Cape Darnley fast ice probably has an important influence on the generation of local dense shelf water, and points out an important water mass transport path. These would help improve the comprehension of ice-sea interaction near Cape Darnley and point out the need for more observations or modeling studies in this area.
-
Key words:
- fast ice /
- dense shelf water /
- Cape Darnley /
- Antarctic
-
图 1 普里兹湾地区的地形分布及地理位置
红色细线所示区域为达恩利角冰间湖和麦肯基湾冰间湖,黑色粗线所示区域为固定冰;左下角为南极地图,其中红色框线所选区域为本文研究区域
Fig. 1 The topographic distribution and geographical location of the Prydz Bay
The red thin line shows Cape Darnley polynya and MacKenzie Bay polynya, and the black thick line shows fast ice; the map of the South Pole is in the lower left corner, in which the area selected by the red box is the research area of this paper
图 6 达恩利角附近海域(66°~69°S,67°~73°E)每个剖面最深处(近于底部)的盐度平面分布
灰色细线为等深线,间隔500 m;浅蓝色线内区域为固定冰;红色框线、蓝色框线和绿色框线为下文剖面图选择区域所用
Fig. 6 Planar distribution of salinity at the deepest level (near the bottom) of each profile near Cape Darnley (66°−69°S,67°−73°E)
Gray fine solid lines are isobath lines, contour interval: 500 m; the area inside the light blue line is the fast ice; the red, blue, and green box lines are used to select the region of the section below
图 7 达恩利角附近海域1−5月和7月的盐度纬向(67.5°~68°S,对应图6中蓝色框线区域)垂直剖面分布
图中黑色方框表示达恩利角固定冰附近区域
Fig. 7 Zonal vertical profiles of salinity Cape Darnley from January to May and July (67.5°−68°S, the region corresponds to the blue box line in figure 6)
The black boxes in the figure indicate the region around the Cape Darnley fast ice
图 10 2011年达恩利角固定冰下方(67.5°~68°S)高密陆架水形成案例
2011年3−5月达恩利角固定冰面积的时间序列如图a所示;达恩利角附近盐度的纬向垂直剖面描述了3个时期分别为: b. 2011年4月1−15日;c. 2011年4月16−30日;d. 2011年5月16−30日
Fig. 10 A case of formation of dense shelf water beneath the Cape Darnley fast ice (67.5°−68°S) in 2011
The time series of Cape Darnley fast ice area from March to July 2011 are shown in figure a; zonal vertical profiles of salinity near Cape Darnley: b. April 1 to April 15, 2011; c. April 16 to April 30, 2011; d. May 16 to May 30, 2011
图 11 2011年4月16−30日达恩利角固定冰下方及其东侧高密陆架水形成案例
a. 象海豹的运动轨迹(象海豹首先从埃默里冰架前缘向西游至达恩利角固定冰下方,再向北游至67.5°S附近,最后游回普里兹湾); b. 100 m水深处盐度平面分布情况;c. 盐度纬向垂直剖面;d. 盐度随时间的垂直剖面
Fig. 11 A case of formation of dense shelf water beneath and to the east of Cape Darnley fast ice from April 16 to April 30, 2011
a. The trajectory of the elephant seal (the elephant seal first travels westward from the Amery ice shelf front to beneath the Cape Darnley fast ice, then northward to near 67.5°S, and finally back to Prydz Bay); b. horizontal distribution of salinity at 100 m depth; c. zonal vertical profile of salinity; d. vertical profile of salinity over time
图 12 2011年5月16−30日达恩利角固定冰下方及其东侧高密陆架水案例
a. 象海豹的运动轨迹(象海豹从埃默里冰架前缘向西北游至达恩利角固定冰下方及其东侧区域);b. 100 m水深处盐度平面分布情况;c. 盐度纬向垂直剖面;d. 盐度随时间的垂直剖面
Fig. 12 A case of formation of dense shelf water beneath and to the east of Cape Darnley fast ice from May 16 to May 30, 2011
a. The trajectory of the elephant seal (the elephant seal travels northwest from the Amery ice shelf front to the area beneath and to the east of the Cape Darnley fast ice); b. horizontal distribution of salinity at 100 m depth; c. zonal vertical profile of salinity; d. vertical profile of salinity over time
-
[1] Massom R A, Hill K L, Lytle V I, et al. Effects of regional fast-ice and iceberg distributions on the behaviour of the Mertz Glacier polynya, East Antarctica[J]. Annals of Glaciology, 2001, 33: 391−398. doi: 10.3189/172756401781818518 [2] Cheng Bin, Vihma T, Zhang Zhanhai, et al. Snow and sea ice thermodynamics in the Arctic: model validation and sensitivity study against SHEBA data[J]. Chinese Journal of Polar Science, 2008, 19(2): 108−122. [3] Giles A B, Massom R A, Lytle V I. Fast-ice distribution in East Antarctica during 1997 and 1999 determined using RADARSAT data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S14. [4] Price D, Rack W, Langhorne P J, et al. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice[J]. The Cryosphere, 2014, 8(3): 1031−1039. doi: 10.5194/tc-8-1031-2014 [5] 赵杰臣, 杨清华, 程斌, 等. 基于温度链浮标获取南极普里兹湾积雪和固定冰厚度的研究[J]. 海洋学报, 2017, 39(11): 115−127.Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic[J]. Haiyang Xuebao, 2017, 39(11): 115−127. [6] Hunke E C, Lipscomb W H, Turner A K. Sea-ice models for climate study: retrospective and new directions[J]. Journal of Glaciology, 2010, 56(200): 1162−1172. doi: 10.3189/002214311796406095 [7] Fraser A D, Massom R A, Michael K J. Generation of high-resolution East Antarctic landfast sea-ice maps from cloud-free MODIS satellite composite imagery[J]. Remote Sensing of Environment, 2010, 114(12): 2888−2896. doi: 10.1016/j.rse.2010.07.006 [8] Nihashi S, Ohshima K I. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability[J]. Journal of Climate, 2015, 28(9): 3650−3670. doi: 10.1175/JCLI-D-14-00369.1 [9] Heil P, Allison I, Lytle V I. Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover[J]. Journal of Geophysical Research: Oceans, 1996, 101(C11): 25741−25752. doi: 10.1029/96JC01921 [10] Mahoney A, Eicken H, Gaylord A G, et al. Alaska landfast sea ice: links with bathymetry and atmospheric circulation[J]. Journal of Geophysical Research: Oceans, 2007, 112(C2): C02001. [11] Murphy E J, Clarke A, Symon C, et al. Temporal variation in Antarctic sea-ice: analysis of a long term fast-ice record from the South Orkney Islands[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(7): 1045−1062. doi: 10.1016/0967-0637(95)00057-D [12] Marshall J, Speer K. Closure of the meridional overturning circulation through Southern Ocean upwelling[J]. Nature Geoscience, 2012, 5(3): 171−180. doi: 10.1038/ngeo1391 [13] Tamura T, Ohshima K I, Nihashi S. Mapping of sea ice production for Antarctic coastal polynyas[J]. Geophysical Research Letters, 2008, 35(7): L07606. [14] Young N W, Turner D, Hyland G, et al. Near-coastal iceberg distributions in East Antarctica, 50°−145°E[J]. Annals of Glaciology, 1998, 27: 68−74. doi: 10.3189/1998AoG27-1-68-74 [15] Enomoto H, Nishio F, Warashina H, et al. Satellite observation of melting and break-up of fast ice in Lutzow-Holm Bay, East Antarctica[J]. Polar Meteorology and Glaciology, 2002, 16: 1−14. [16] Heil P. Atmospheric conditions and fast ice at Davis, East Antarctica: a case study[J]. Journal of Geophysical Research: Oceans, 2006, 111(C5): C05009. [17] Kim S, Saenz B, Scanniello J, et al. Local climatology of fast ice in McMurdo Sound, Antarctica[J]. Antarctic Science, 2018, 30(2): 125−142. doi: 10.1017/S0954102017000578 [18] Lei Ruibo, Li Zhijun, Cheng Bin, et al. Annual cycle of landfast sea ice in Prydz Bay, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2010, 115(C2): C02006. [19] Ushio S. Factors affecting fast-ice break-up frequency in Lützow-Holm Bay, Antarctica[J]. Annals of Glaciology, 2006, 44: 177−182. doi: 10.3189/172756406781811835 [20] Wongpan P, Hughes K G, Langhorne P J, et al. Brine convection, temperature fluctuations, and permeability in winter antarctic land-fast sea ice[J]. Journal of Geophysical Research: Oceans, 2018, 123(1): 216−230. doi: 10.1002/2017JC012999 [21] 雷瑞波, 李志军, 窦银科, 等. 南极中山站附近固定冰生消过程观测[J]. 水科学进展, 2010, 21(5): 708−712.Lei Ruibo, Li Zhijun, Dou Yinke, et al. Observations of the growth and decay processes of fast ice around Zhongshan Station in Antarctica[J]. Advances in Water Science, 2010, 21(5): 708−712. [22] 雷瑞波, 李志军, 张占海, 等. 南极中山站附近海域固定冰的夏季变化[J]. 极地研究, 2007, 19(4): 275−284.Lei Ruibo, Li Zhijun, Zhang Zhanhai, et al. Summer fast-ice evolution off Zhongshan Station, Antarctica[J]. Chinese Journal of Polar Research, 2007, 19(4): 275−284. [23] 窦银科, 常晓敏, 敦卓, 等. 电容感应式冰厚监测系统在南极海冰监测中的应用[J]. 数学的实践与认识, 2014, 44(4): 197−204. doi: 10.3969/j.issn.1000-0984.2014.04.031Dou Yinke, Chang Xiaomin, Dun Zhuo, et al. Monitoring and application of the system of capacitive sensing for ice thickness in the Antarctic sea ice[J]. Mathematics in Practice and Theory, 2014, 44(4): 197−204. doi: 10.3969/j.issn.1000-0984.2014.04.031 [24] 杨清华, 刘骥平, 孙启振, 等. 2010年春季南极固定冰反照率变化特征及其影响因子[J]. 地球物理学报, 2013, 56(7): 2177−2184. doi: 10.6038/cjg20130705Yang Qinghua, Liu Jiping, Sun Qizhen, et al. Surface albedo variation and its influencing factors over costal fast ice around Zhongshan Station, Antarctica in austral spring of 2010[J]. Chinese Journal of Geophysics, 2013, 56(7): 2177−2184. doi: 10.6038/cjg20130705 [25] 赵杰臣, 郝光华, 李杰, 等. 南极中山站海冰综合观测系统的建设[J]. 海洋预报, 2018, 35(5): 41−52. doi: 10.11737/j.issn.1003-0239.2018.05.006Zhao Jiechen, Hao Guanghua, Li Jie, et al. Construction of integrated sea ice observation system at Antarctic Zhongshan Station[J]. Marine Forecasts, 2018, 35(5): 41−52. doi: 10.11737/j.issn.1003-0239.2018.05.006 [26] Li Xinqing, Shokr M, Hui Fengming, et al. The spatio-temporal patterns of landfast ice in Antarctica during 2006–2011 and 2016–2017 using high-resolution SAR imagery[J]. Remote Sensing of Environment, 2020, 242: 111736. doi: 10.1016/j.rse.2020.111736 [27] Zhao Jiechen, Cheng Jingjing, Tian Zhongxiang, et al. Snow and ice thicknesses derived from Fast Ice Prediction System Version 2.0 (FIPS V2.0) in Prydz Bay, East Antarctica: comparison with in-situ observations[J]. Big Earth Data, 2022, 6(4): 492−503. doi: 10.1080/20964471.2021.1981196 [28] Fraser A D, Massom R A, Michael K J, et al. East Antarctic landfast sea ice distribution and variability, 2000–08[J]. Journal of Climate, 2012, 25(4): 1137−1156. doi: 10.1175/JCLI-D-10-05032.1 [29] Fraser A D, Ohshima K I, Nihashi S, et al. Landfast Sea Ice Extent Time-Series, from March 2000 to March 2014[EB/OL]. [2022−11−01]. http://doi.org/10.4225/15/58eedb8f99dbc [30] Fraser A D, Ohshima K I, Nihashi S, et al. Landfast ice controls on sea-ice production in the Cape Darnley Polynya: a case study[J]. Remote Sensing of Environment, 2019, 233: 111315. doi: 10.1016/j.rse.2019.111315 [31] Petty A A, Feltham D L, Holland P R. Impact of atmospheric forcing on Antarctic continental shelf water masses[J]. Journal of Physical Oceanography, 2013, 43(5): 920−940. doi: 10.1175/JPO-D-12-0172.1 [32] Silvano A, Rintoul S R, Peña-Molino B, et al. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water[J]. Science Advances, 2018, 4(4): eaap9467. doi: 10.1126/sciadv.aap9467 [33] Ohshima K I, Fukamachi Y, Williams G D, et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya[J]. Nature Geoscience, 2013, 6(3): 235−240. doi: 10.1038/ngeo1738 [34] Williams G D, Herraiz-Borreguero L, Roquet F, et al. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay[J]. Nature Communications, 2016, 7(1): 12577. doi: 10.1038/ncomms12577 [35] Johnson G C. Quantifying Antarctic bottom water and North Atlantic deep water volumes[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05027. [36] Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55−109. doi: 10.1016/S0079-6611(99)00004-X [37] Portela E, Rintoul S R, Bestley S, et al. Seasonal transformation and spatial variability of water masses within MacKenzie polynya, Prydz Bay[J]. Journal of Geophysical Research: Oceans, 2021, 126(12): e2021JC017748. [38] Roquet F, Williams G, Hindell M, et al. A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals[J]. Scientific Data, 2014, 1: 140028. [39] Hooker S K, Boyd I L. Salinity sensors on seals: use of marine predators to carry CTD data loggers[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(7): 927−939. doi: 10.1016/S0967-0637(03)00055-4 [40] Lake R A, Lewis E L. Salt rejection by sea ice during growth[J]. Journal of Geophysical Research, 1970, 75(3): 583−597. doi: 10.1029/JC075i003p00583 [41] 韩雨欣. 搁浅冰山对南极普里兹湾环流及海冰影响的数值[D]. 青岛: 中国海洋大学, 2022.Han Yuxin. Simulating the effects of grounding giant icebergs on circulation and sea ice in Prydz Bay using a coupled seaice-ocean numerical model[D]. Qingdao: Ocean University of China, 2022. [42] 程瑶瑶, 史久新, 郑少军. 南极麦肯齐湾冰间湖的时空变化及主要影响因素分析[J]. 中国海洋大学学报, 2012, 42(7/8): 1−9.Cheng Yaoyao, Shi Jiuxin, Zheng Shaojun. Temporal and spatial variation of the Mackenzie Bay polynya, Antarctica and its main impact factors[J]. Periodical of Ocean University of China, 2012, 42(7/8): 1−9. [43] 林丽娜, 陈红霞, 刘娜. 普里兹湾及邻近海域多航次水文特征比较分析[J]. 海洋科学进展, 2015, 33(4): 460−470. doi: 10.3969/j.issn.1671-6647.2015.04.004Lin Lina, Chen Hongxia, Liu Na. A comparative analysis on hydrographic features during several cruises in the region of Prydz Bay, Antarctic[J]. Advances in Marine Science, 2015, 33(4): 460−470. doi: 10.3969/j.issn.1671-6647.2015.04.004