留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CMIP6模式分析北极典型海区浮游植物藻华模拟误差

杨美晴 冯志轩 宋洪军

杨美晴,冯志轩,宋洪军. 基于CMIP6模式分析北极典型海区浮游植物藻华模拟误差[J]. 海洋学报,2023,45(7):40–55 doi: 10.12284/hyxb2023115
引用本文: 杨美晴,冯志轩,宋洪军. 基于CMIP6模式分析北极典型海区浮游植物藻华模拟误差[J]. 海洋学报,2023,45(7):40–55 doi: 10.12284/hyxb2023115
Yang Meiqing,Feng Zhixuan,Song Hongjun. Analyze simulation errors of phytoplankton blooms in typical Arctic seas based on CMIP6 models[J]. Haiyang Xuebao,2023, 45(7):40–55 doi: 10.12284/hyxb2023115
Citation: Yang Meiqing,Feng Zhixuan,Song Hongjun. Analyze simulation errors of phytoplankton blooms in typical Arctic seas based on CMIP6 models[J]. Haiyang Xuebao,2023, 45(7):40–55 doi: 10.12284/hyxb2023115

基于CMIP6模式分析北极典型海区浮游植物藻华模拟误差

doi: 10.12284/hyxb2023115
基金项目: 国家自然科学基金面上项目(42176225);上海市浦江人才计划(20PJ1403100);上海市“科技创新行动计划”自然科学基金(20ZR416300);上海市科学技术委员会重点项目(21JC402500)。
详细信息
    作者简介:

    杨美晴(1998-),女,吉林省吉林市人,从事北冰洋生态系统过程与机制研究。E-mail:yangmeiqing9@163.com

    通讯作者:

    冯志轩,男,研究员,从事海洋多尺度物理与生态耦合过程的观测和模拟研究。E-mail: zxfeng@sklec.ecnu.edu.cn

  • 中图分类号: S963.21+3;P941.62

Analyze simulation errors of phytoplankton blooms in typical Arctic seas based on CMIP6 models

  • 摘要: 在海冰覆盖的极地海区,浮游植物季节性藻华变化呈现典型的单峰特征。由于藻华过程受控于海冰、光照、混合层深度和营养盐供给等多个因素,其发生时间和强度在地球系统模式模拟结果中存在较大的不确定性。本研究选取11种CMIP6地球系统模式结果,以多种类型的观测资料和产品作为判断参考值,评估各模式结果能否准确模拟北极典型海区(巴伦支海、楚科奇海及白令海)浮游植物藻华动态的变化规律。通过计算能表征光照和营养盐限制的多个指标,分析表层叶绿素a浓度模拟结果的误差来源。结果表明,依据冰下光照时长、混合层变化速率、表层硝酸盐指标将11种模式分为3组,与参考值指标差异较小组别中的模式在藻华模拟方面明显占优,而其余模式在表层硝酸盐或混合层变化的模拟上存在较大误差,导致表层叶绿素a浓度峰值的发生时间延后且峰值浓度误差大。总体而言,地球系统模式配置中除要考虑光照和营养盐这两种基础限制条件外,也需关注由温盐控制的上混合层深度,从而准确模拟出表层叶绿素a浓度的季节性变化规律,上述研究为地球系统模式中相关参数化方案的改进提供了参考。
  • 图  1  研究区域划分

    Fig.  1  Division of the study area

    图  2  本研究的技术方法

    Fig.  2  Technology road of this study

    图  3  巴伦支海多年平均海冰密集度分布

    Fig.  3  Mean sea ice concentration in the Barents Sea

    图  4  楚科奇海(65°~70°N)及白令海(55°~65°N)多年平均海冰密集度分布

    Fig.  4  Mean sea ice concentration in the Chukchi Sea (65°−70°N) and Bering Sea (55°−65°N)

    图  5  CMIP6模式模拟巴伦支海(a)、楚科奇海(b)和白令海(c)30年平均海冰空间能力的泰勒图

    Fig.  5  Taylor diagram of CMIP6 model simulations of 30-year seasonal mean sea ice distribution in the Barents Sea (a), Chukchi Sea (b), and Bering Sea (c)

    图  6  海冰面积、冰下光照时长、混合层深度、表层硝酸盐浓度和表层叶绿素a浓度在巴伦支海、楚科奇海和白令海的气候态月平均曲线

    Fig.  6  Monthly climatology of sea ice area, light duration under ice, mixed layer depth, surface nitrate concentration, and surface chlorophyll a concentration in the Barents Sea, Chukchi Sea, and Bering Sea

    图  7  巴伦支海(a)、楚科奇海(b)和白令海(c)地球系统模式参数模拟情况与分组

    Fig.  7  Simulation and grouping of earth system model parameters in the Barents Sea (a), Chukchi Sea (b), and Bering Sea (c)

    表  1  本研究所选取的11种地球系统模式及其配置特点

    Tab.  1  List of eleven earth system models and their configuration characteristics

    模式名称 国家 主要耦合模块 网格数
    (经向 × 纬向 × 垂向)
    参考文献
    ACCESS-ESM1-5 澳大利亚 大气、气溶胶、海洋、陆地、海冰、海洋生地化 360 × 300 × 50 Ziehn等[21]
    CESM2 美国 大气、气溶胶、大气化学、海洋、陆地、海冰、海洋生地化、冰架 320 × 384 × 60 Danabasoglu[22]
    CMCC-ESM2 意大利 大气、气溶胶、海洋、陆地、海冰、海洋生地化 362 × 292 × 50 Lovato等[23]
    CNRM-ESM2-1 法国 大气、气溶胶、大气化学、海洋、陆地、海冰、海洋生地化 362 × 294 × 75 Séférian等[24]
    CanESM5 加拿大 大气、气溶胶、大气化学、海洋、陆地、海冰、海洋生地化、冰架 360 × 290 × 45 Sospedra-Alfonso等[25]
    GFDL-ESM4 美国 大气、气溶胶、大气化学、海洋、陆地、海冰、海洋生地化、冰架 720 × 576 × 75 Dunne等[26]
    IPSL-CM6A-LR 法国 大气、海洋、陆地、海冰、海洋生地化 362 × 332 × 75 Boucher等[27]
    MIROC-ES2L 日本 大气、气溶胶、大气化学、海洋、陆地、海冰、海洋生地化 360 × 256 × 63 Hajima等[28]
    MPI-ESM1-2-HR 德国 大气、海洋、陆地、海冰、海洋生地化 802 × 404 × 40 Müller等[29]
    MPI-ESM1-2-LR 德国 大气、海洋、陆地、海冰、海洋生地化 256 × 220 × 40 Müller等[29]
    UKESM1-0-LL 英国 大气、气溶胶、大气化学、海洋、陆地、海冰、海洋生地化 360 × 330 × 75 Froster等[30]
    下载: 导出CSV

    表  2  CMIP6地球系统模式月平均指标的均方根误差

    Tab.  2  Root mean square errors of monthly mean indices derived from CMIP6 ESMs

    海区 模式名称 冰下日照时长/h 表层硝酸盐浓度/
    (mmol·m−3
    混合层变化速率/
    (m·mon−1
    表层叶绿素a浓度/
    (mg·m−3
    叶绿素a浓度峰值
    出现月份
    巴伦支海 ACCESS-ESM1-5 0.518 5.63 37.95 0.47 7
    CESM2 1.878 1.15 28.47 0.73 6−7
    CMCC-ESM2 2.568 1.56 48.98 0.47 5
    CNRM-ESM2-1 0.349 5.35 32.76 0.25 6
    CanESM5 3.190 3.51 28.04 0.23 5
    GFDL-ESM4 0.789 1.00 30.05 0.18 5
    IPSL-CM6A-LR 0.769 1.47 29.84 0.12 5
    MIROC-ES2L 0.904 3.01 51.43 0.40 6
    MPI-ESM1-2-HR 0.888 1.18 35.75 0.90 6−7
    MPI-ESM1-2-LR 0.878 4.21 38.91 0.49 5
    UKESM1-0-LL 4.513 1.29 38.36 0.26 6
    楚科奇海 ACCESS-ESM1-5 0.819 16.89 16.61 0.32 7
    CESM2 0.864 2.95 11.87 0.78 6
    CMCC-ESM2 2.599 5.11 12.92 0.75 6
    CNRM-ESM2-1 1.576 3.81 11.20 0.46 7−8
    CanESM5 3.070 4.43 10.76 0.18 6
    GFDL-ESM4 2.016 6.33 10.25 1.76 6
    IPSL-CM6A-LR 0.693 4.80 10.73 0.24 9
    MIROC-ES2L 1.776 3.08 12.29 0.19 6
    MPI-ESM1-2-HR 1.086 4.46 11.33 1.56 7
    MPI-ESM1-2-LR 2.654 6.22 10.82 0.45 7
    UKESM1-0-LL 3.438 19.04 14.17 0.55 6
    白令海 ACCESS-ESM1-5 0.642 13.31 14.48 0.53 7
    CESM2 1.327 4.61 12.42 1.33 5
    CMCC-ESM2 1.439 8.58 15.95 0.36 5
    CNRM-ESM2-1 0.666 7.48 14.38 0.20 5
    CanESM5 1.861 6.15 16.56 0.40 4
    GFDL-ESM4 0.630 5.57 11.76 0.51 5
    IPSL-CM6A-LR 0.867 9.30 11.87 0.28 5
    MIROC-ES2L 0.525 4.55 13.76 0.32 6
    MPI-ESM1-2-HR 0.485 2.86 14.55 1.81 6
    MPI-ESM1-2-LR 1.340 3.99 11.50 0.59 5
    UKESM1-0-LL 3.635 9.04 15.64 0.39 5
    下载: 导出CSV

    表  3  K均值聚类对CMIP6模式分组结果与相应质心

    Tab.  3  Grouping of CMIP6 ESMs based on K-means clustering and corresponding centroids

    海区 组别 模式 质心坐标
    巴伦支海 第一组 ACCESS-ESM1-5、CNRM-ESM2-1、
    MPI-ESM1-2-HR、MPI-ESM1-2-LR、
    UKESM1-0-LL
    (1.429,3.532,36.743)
    第二组 CMCC-ESM2、MIROC-ES2L (1.736,2.286,50.208)
    第三组 CESM2、CanESM5、GFDL-ESM4、
    IPSL-CM6A-LR
    (1.657,1.779,29.097)
    楚科奇海 第一组 ACCESS-ESM1-5、UKESM1-0-LL (1.432,4.035,11.725)
    第二组 CESM2、CMCC-ESM2、CNRM-ESM2-1、IPSL-CM6A-LR、MIROC-ES2L、
    MPI-ESM1-2-HR
    (2.128,17.961,15.394)
    第三组 CanESM5、GFDL-ESM4、
    MPI-ESM1-2-LR
    (2.583,5.523,10.615)
    白令海 第一组 CMCC-ESM2、CNRM-ESM2-1、
    CanESM5、UKESM1-0-LL
    (1.900,7.812,15.631)
    第二组 ACCESS-ESM1-5、IPSL-CM6A-LR (0.755,11.305,13.178)
    第三组 CESM2、GFDL-ESM4、MIROC-ES2L、
    MPI-ESM1-2-HR、MPI-ESM1-2-LR
    (0.861,4.318,12.798)
    下载: 导出CSV
  • [1] 朱大勇, 赵进平, 史久新. 北极楚科奇海海冰面积多年变化的研究[J]. 海洋学报, 2007, 29(2): 25−33.

    Zhu Dayong, Zhao Jinping, Shi Jiuxin. Study on the multi-year variations of sea ice cover of Chukchi Sea in Arctic Ocean[J]. Haiyang Xuebao, 2007, 29(2): 25−33.
    [2] Hunt Jr G L, Blanchard A L, Boveng P, et al. The Barents and Chukchi Seas: comparison of two Arctic shelf ecosystems[J]. Journal of Marine Systems, 2013, 109−110: 43−68. doi: 10.1016/j.jmarsys.2012.08.003
    [3] Årthun M, Eldevik T, Smedsrud L H, et al. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat[J]. Journal of Climate, 2012, 25(13): 4736−4743. doi: 10.1175/JCLI-D-11-00466.1
    [4] 李正, 沙龙滨, 刘焱光, 等. 末次盛冰期以来巴伦支海−喀拉海古海洋环境及海冰研究进展[J]. 海洋通报, 2021, 40(3): 241−253.

    Li Zheng, Sha Longbin, Liu Yanguang, et al. Research progress in the paleoceanography environment and sea ice around Barents-Kara Sea since the Last Glacial Maximum[J]. Marine Science Bulletin, 2021, 40(3): 241−253.
    [5] Sorteberg A, Kvingedal B. Atmospheric forcing on the Barents Sea winter ice extent[J]. Journal of Climate, 2006, 19(19): 4772−4784. doi: 10.1175/JCLI3885.1
    [6] Carmack E C, Macdonald R W, Perkin R G, et al. Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: results from the Larsen-93 expedition[J]. Geophysical Research Letters, 1995, 22(9): 1061−1064. doi: 10.1029/95GL00808
    [7] McLaughlin F A, Carmack E C, Macdonald R W, et al. Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin[J]. Journal of Geophysical Research: Oceans, 1996, 101(C1): 1183−1197. doi: 10.1029/95JC02634
    [8] Coachman L K, Tripp R B. Currents north of Bering Strait in winter[J]. Limnology and Oceanography, 1970, 15(4): 625−632. doi: 10.4319/lo.1970.15.4.0625
    [9] 艾松涛, 陈一凡, 桂大伟, 等. 中国历次极地考察航线及破冰船航行特征分析(1984−2019)[J]. 测绘地理信息, 2021, 46(3): 1−9.

    Ai Songtao, Chen Yifan, Gui Dawei, et al. Characteristics analysis on polar voyage routes and navigation of Chinese icebreakers (1984−2019)[J]. Journal of Geomatics, 2021, 46(3): 1−9.
    [10] 王锚婷, 王朝晖, 雷明丹, 等. 冰藻在北冰洋生态系统中的重要性及其对全球变暖的响应[J]. 海洋环境科学, 2021, 40(4): 550−554.

    Wang Maoting, Wang Zhaohui, Lei Mingdan, et al. The importance of ice algae in the Arctic Ocean ecosystem and their responses to the global warming[J]. Marine Environmental Science, 2021, 40(4): 550−554.
    [11] Song Hongjun, Ji Rubao, Jin Meibing, et al. Strong and regionally distinct links between ice-retreat timing and phytoplankton production in the Arctic Ocean[J]. Limnology and Oceanography, 2021, 66(6): 2498−2508. doi: 10.1002/lno.11768
    [12] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445−456.

    Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445−456.
    [13] Sellar A A, Jones C G, Mulcahy J P, et al. UKESM1: description and evaluation of the U. K. Earth System Model[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4513−4558. doi: 10.1029/2019MS001739
    [14] Adcroft A, Anderson W, Balaji V, et al. The GFDL global ocean and sea ice model OM4.0: model description and simulation features[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(10): 3167−3211. doi: 10.1029/2019MS001726
    [15] Swart N C, Cole J N S, Kharin V V, et al. The Canadian earth system model version 5 (CanESM5.0. 3)[J]. Geoscientific Model Development, 2019, 12(11): 4823−4873. doi: 10.5194/gmd-12-4823-2019
    [16] Mulcahy J P, Johnson C, Jones C G, et al. Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations[J]. Geoscientific Model Development, 2020, 13(12): 6383−6423. doi: 10.5194/gmd-13-6383-2020
    [17] Liu Yaman, Dong Xinyi, Wang Minghuai, et al. Analysis of secondary organic aerosol simulation bias in the Community Earth System Model (CESM2.1)[J]. Atmospheric Chemistry and Physics, 2021, 21(10): 8003−8021. doi: 10.5194/acp-21-8003-2021
    [18] Hague M, Vichi M. A link between CMIP5 phytoplankton phenology and sea ice in the Atlantic Southern Ocean[J]. Geophysical Research Letters, 2018, 45(13): 6566−6575. doi: 10.1029/2018GL078061
    [19] Names and Limits of Oceans and Seas[M]. Monaco: International Hydrographic Bureau, 2002.
    [20] Polyakov I V, Bhatt U S, Walsh J E, et al. Recent oceanic changes in the Arctic in the context of long-term observations[J]. Ecological Applications, 2013, 23(8): 1745−1764. doi: 10.1890/11-0902.1
    [21] Ziehn T, Chamberlain M A, Law R M, et al. The Australian earth system model: ACCESS-ESM1.5[J]. Journal of Southern Hemisphere Earth Systems Science, 2020, 70(1): 193−214. doi: 10.1071/ES19035
    [22] Danabasoglu G, Lamarque J F, Bacmeister J, et al. The community earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(2): e2019MS001916.
    [23] Lovato T, Peano D, Butenschön M, et al. CMIP6 simulations with the CMCC earth system model (CMCC-ESM2)[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(3): e2021MS002814. doi: 10.1029/2021MS002814
    [24] Séférian R, Nabat P, Michou M, et al. Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4182−4227. doi: 10.1029/2019MS001791
    [25] Sospedra-Alfonso R, Merryfield W J, Boer G J, et al. Decadal climate predictions with the Canadian Earth system model version 5 (CanESM5)[J]. Geoscientific Model Development, 2021, 14(11): 6863−6891. doi: 10.5194/gmd-14-6863-2021
    [26] Dunne J P, Horowitz L W, Adcroft A J, et al. The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(11): e2019MS002015.
    [27] Boucher O, Servonnat J, Albright A L, et al. Presentation and evaluation of the IPSL-CM6A-LR climate model[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(7): e2019MS002010.
    [28] Hajima T, Watanabe M, Yamamoto A, et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks[J]. Geoscientific Model Development, 2020, 13(5): 2197−2244. doi: 10.5194/gmd-13-2197-2020
    [29] Müller W A, Jungclaus J H, Mauritsen T, et al. A higher-resolution version of the max planck institute earth system model (MPI-ESM1.2-HR)[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(7): 1383−1413. doi: 10.1029/2017MS001217
    [30] Forster P M, Maycock A C, McKenna C M, et al. Latest climate models confirm need for urgent mitigation[J]. Nature Climate Change, 2020, 10(1): 7−10. doi: 10.1038/s41558-019-0660-0
    [31] Comiso J C, Meier W N, Gersten R. Variability and trends in the Arctic Sea ice cover: results from different techniques[J]. Journal of Geophysical Research: Oceans, 2017, 122(8): 6883−6900. doi: 10.1002/2017JC012768
    [32] Maritorena S, Siegel D A. Consistent merging of satellite ocean color data sets using a bio-optical model[J]. Remote Sensing of Environment, 2005, 94(4): 429−440. doi: 10.1016/j.rse.2004.08.014
    [33] Deser C, Walsh J E, Timlin M S. Arctic sea ice variability in the context of recent atmospheric circulation trends[J]. Journal of Climate, 2000, 13(3): 617−633. doi: 10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2
    [34] Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7183−7192. doi: 10.1029/2000JD900719
    [35] Li Yun, Ji Rubao, Jenouvrier S, et al. Synchronicity between ice retreat and phytoplankton bloom in circum-Antarctic polynyas[J]. Geophysical Research Letters, 2016, 43(5): 2086−2093. doi: 10.1002/2016GL067937
    [36] Forsythe W C, Rykiel Jr E J, Stahl R S, et al. A model comparison for daylength as a function of latitude and day of year[J]. Ecological Modelling, 1995, 80(1): 87−95. doi: 10.1016/0304-3800(94)00034-F
    [37] Peralta-Ferriz C, Woodgate R A. Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling[J]. Progress in Oceanography, 2015, 134: 19−53. doi: 10.1016/j.pocean.2014.12.005
    [38] 庞小平, 胡晓坤, 季青, 等. 北冰洋叶绿素a及初级生产力遥感反演研究进展[J]. 极地研究, 2022, 34(1): 1−10.

    Pang Xiaoping, Hu Xiaokun, Ji Qing, et al. Research progress on remote sensing retrieval of chlorophyll a and primary productivity in the Arctic Ocean[J]. Chinese Journal of Polar Research, 2022, 34(1): 1−10.
    [39] 陈建芳, 金海燕, 白有成, 等. 北极快速变化的生态环境响应[J]. 海洋学报, 2018, 40(10): 22−31.

    Chen Jianfang, Jin Haiyan, Bai Youcheng, et al. Marine ecological and environmental responses to the Arctic rapid change[J]. Haiyang Xuebao, 2018, 40(10): 22−31.
    [40] Lewis K M, Arrigo K R. Ocean color algorithms for estimating chlorophyll a, CDOM absorption, and particle backscattering in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2019JC015706.
    [41] 徐秋栋. 应用多元统计分析[J]. 工业工程与管理, 2014, 19(1): 22.

    Xu Qiudong. Applied multivariate statistical analysis[J]. Industrial Engineering and Management, 2014, 19(1): 22.
    [42] Carranza M M, Gille S T. Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer[J]. Journal of Geophysical Research: Oceans, 2015, 120(1): 304−323. doi: 10.1002/2014JC010203
    [43] Wang S, Bailey D, Lindsay K, et al. Impact of sea ice on the marine iron cycle and phytoplankton productivity[J]. Biogeosciences, 2014, 11(17): 4713−4731. doi: 10.5194/bg-11-4713-2014
    [44] Sallée J B, Shuckburgh E, Bruneau N, et al. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1830−1844. doi: 10.1002/jgrc.20135
    [45] Fauchereau N, Tagliabue A, Bopp L, et al. The response of phytoplankton biomass to transient mixing events in the Southern Ocean[J]. Geophysical Research Letters, 2011, 38(17): L17601.
    [46] Cavanagh R D, Murphy E J, Bracegirdle T J, et al. A synergistic approach for evaluating climate model output for ecological applications[J]. Frontiers in Marine Science, 2017, 4: 308. doi: 10.3389/fmars.2017.00308
    [47] Boyd P W. Environmental factors controlling phytoplankton processes in the Southern Ocean1[J]. Journal of Phycology, 2002, 38(5): 844−861. doi: 10.1046/j.1529-8817.2002.t01-1-01203.x
    [48] 柯长青, 金鑫, 沈校熠, 等. 南北极海冰变化及其影响因素的对比分析[J]. 极地研究, 2020, 32(1): 1−12.

    Ke Changqing, Jin Xin, Shen Xiaoyi, et al. Comparison of Antarctic and Arctic sea ice variations and their impact factors[J]. Chinese Journal of Polar Research, 2020, 32(1): 1−12.
    [49] 邱博, 张录军, 储敏, 等. 气候系统模式对于北极海冰模拟分析[J]. 极地研究, 2015, 27(1): 47−55.

    Qiu Bo, Zhang Lujun, Chu Min, et al. Performance analysis of Arctic sea ice simulation in climate system models[J]. Chinese Journal of Polar Research, 2015, 27(1): 47−55.
    [50] 魏皓, 赵伟, 罗晓凡, 等. 北冰洋浮游生物空间分布及其季节变化的模拟[J]. 海洋学报, 2019, 41(9): 65−79.

    Wei Hao, Zhao Wei, Luo Xiaofan, et al. Simulation of spatial distribution and seasonal variation of plankton in the Arctic Ocean[J]. Haiyang Xuebao, 2019, 41(9): 65−79.
    [51] Jin Meibing, Popova E E, Zhang Jinlun, et al. Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 934−948. doi: 10.1002/2015JC011183
    [52] Cullen J J. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(5): 791−803. doi: 10.1139/f82-108
    [53] Martin J, Tremblay J É, Gagnon J, et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters[J]. Marine Ecology Progress Series, 2010, 412: 69−84. doi: 10.3354/meps08666
    [54] Arrigo K R, Mills M M, van Dijken G L, et al. Late spring nitrate distributions beneath the ice-covered northeastern Chukchi Shelf[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(9): 2409−2417. doi: 10.1002/2017JG003881
    [55] Ardyna M, Babin M, Gosselin M, et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms[J]. Geophysical Research Letters, 2014, 41(17): 6207−6212. doi: 10.1002/2014GL061047
    [56] Harrison W G, Cota G F. Primary production in polar waters: relation to nutrient availability[J]. Polar Research, 1991, 10(1): 87−104. doi: 10.1111/j.1751-8369.1991.tb00637.x
    [57] Stein R, MacDonald R W. The Organic Carbon Cycle in the Arctic Ocean[M]. New York: Springer, 2004.
    [58] Ardyna M, Gosselin M, Michel C, et al. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: contrasting oligotrophic and eutrophic regions[J]. Marine Ecology Progress Series, 2011, 442: 37−57. doi: 10.3354/meps09378
    [59] Michel C, Hamilton J, Hansen E, et al. Arctic Ocean outflow shelves in the changing Arctic: a review and perspectives[J]. Progress in Oceanography, 2015, 139: 66−88. doi: 10.1016/j.pocean.2015.08.007
    [60] Tremblay J É, Anderson L G, Matrai P, et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean[J]. Progress in Oceanography, 2015, 139: 171−196. doi: 10.1016/j.pocean.2015.08.009
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  84
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2023-02-27
  • 网络出版日期:  2023-08-08
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回