留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2011−2020年间南大洋印度洋扇区冬季水的年际变化特征及其成因

程灵巧 孟俊杰 李等 北出裕二郎 张春玲 左军成

程灵巧,孟俊杰,李等,等. 2011−2020年间南大洋印度洋扇区冬季水的年际变化特征及其成因[J]. 海洋学报,2023,45(8):11–23 doi: 10.12284/hyxb2023100
引用本文: 程灵巧,孟俊杰,李等,等. 2011−2020年间南大洋印度洋扇区冬季水的年际变化特征及其成因[J]. 海洋学报,2023,45(8):11–23 doi: 10.12284/hyxb2023100
Cheng Lingqiao,Meng Junjie,Li Deng, et al. Interannual variability of winter water in the Indian Ocean Sector of the Southern Ocean and its causes during 2011−2020[J]. Haiyang Xuebao,2023, 45(8):11–23 doi: 10.12284/hyxb2023100
Citation: Cheng Lingqiao,Meng Junjie,Li Deng, et al. Interannual variability of winter water in the Indian Ocean Sector of the Southern Ocean and its causes during 2011−2020[J]. Haiyang Xuebao,2023, 45(8):11–23 doi: 10.12284/hyxb2023100

2011−2020年间南大洋印度洋扇区冬季水的年际变化特征及其成因

doi: 10.12284/hyxb2023100
基金项目: 自然资源部海洋生态监测与修复技术重点实验室开放研究基金(MEMRT202211);国家自然科学基金(42130402, 42176012)。
详细信息
    作者简介:

    程灵巧(1985-), 女, 浙江省台州市人,副教授,主要从事海洋微结构混合、极地海洋学研究。E-mail: lqcheng@shou.edu.cn

  • 中图分类号: P728.1;P731.1

Interannual variability of winter water in the Indian Ocean Sector of the Southern Ocean and its causes during 2011−2020

  • 摘要: 已有多个研究证实南大洋自海表到底层的海水特性存在长期变化特征,并指出其与大尺度外部强迫的改变紧密相关。然而,截至目前海洋学界对各水团的更高频年际变化特征及其影响原因依然了解甚少,其中包括了近海表最易受外部强迫影响的冬季水(Winter Water, WW)。本文结合2011−2020年间每年1月沿110°E断面采集的重复观测资料和再分析气象资料,研究季节性冰区内WW层10年间的年际变化。结果发现,该海域WW特性具有显著的时空变化特征。WW核心温度距平与前一年的南极涛动(Antarctic Oscillation, AAO)指数距平具有显著正相关关系(R = 0.69),而AAO指数与局地纬向风转向所在纬度呈负相关关系(R = −0.61),说明AAO指数越大(小)时,辐散带会向南(北)移动,季节性冰区的WW核心温度升高(降低)。局地净降水量距平变化与WW核心盐度距平的变化相反,2016年之后负的净降水量距平(大气向海洋输送淡水减少)促使WW核心盐度距平增大。另外,局地涡动能距平与WW厚度距平呈负相关关系(R = −0.70),据此推测该海域持续存在的气旋式涡旋的强度增强(减弱),引发向上抽吸作用增强(减弱),导致绕极深层水的深度变浅(加深),进而引起其上层WW层厚度的变化。通过本研究工作,有助于深入理解南大洋海洋水柱对外部强迫高频变化的具体响应。
  • 图  1  观测站点分布

    各站点对应数字代表重复观测次数;浅绿色线和红色线分别代表冬季冰缘线和夏季冰缘线,分别为2011−2020年10年平均的1月和7月的月平均15%海冰密集度线;海底地形基于ETOPO1数据[45]绘制

    Fig.  1  Distribution of observation sites

    Numbers represent the number of repeated observations at the corresponding stations; the light green line and red line represent the winter ice edge and the summer ice edge, respectively, calculated from the mean 15% sea ice concentration lines in Januaries and Julies over 2011−2020; bottom topography is drawn according to the ETOPO1 dataset[45]

    图  2  2011−2020年1月沿110°E获得的位温(θ)、盐度断面图

    等值线表示盐度;黑色虚线为θ = −0.5℃等温线,代表WW层的上下界;白点代表每个站点冷核最低温度所在深度

    Fig.  2  Cross sections of potential temperature (θ) and salinity obtained along 110°E in Januaries 2011−2020

    Contours indicate salinity; black dashed lines show the θ = −0.5℃ isotherms, being the upper and lower boundaries of the WW layer; white dot represents the depth where the cold core temperature is observed at each station

    图  3  2011−2020年间所有观测站点上WW冷核对应的位温和盐度分布

    不同颜色区分观测的年份;黑色三角代表同一整数纬度站点上的平均值;误差条代表1个标准差

    Fig.  3  Distributions of potential temperature and salinity for WW cold core at all stations during 2011−2020

    Different colors distinguish the years of observation; black triangles represent the mean values at the same integer latitude stations; error bars represent one standard deviation

    图  4  2011−2020年间WW核心温度距平(a)、盐度距平(b)、中性密度距平(c)、溶解氧浓度距平(d)、厚度距平(e)和冷核所在深度距平(f)的时间序列

    误差条代表相同年份不同网格之间结果的一个标准差,即空间变化部分

    Fig.  4  Time series of anomalies of core temperature (a), salinity (b), neutral density (c), dissolved oxygen concentration (d) at cold core of WW, thickness anomalies of WW (e), and depth anomalies of the cold core of WW (f) during 2011−2020

    Error bars denote one standard deviation of the results between different grids for the same year, as the spatial variability components

    图  5  AAO指数(a)、Lt(b)的时间序列及两者相关关系(c)

    图a和图b中灰色空心圆圈及虚线代表月平均结果;黑线代表每3个月滑动平均后结果;点线及黑点代表年平均结果

    Fig.  5  Time series of AAO index (a), Lt (b), and their correlation (c)

    In figure a and figure b, gray circles and dashed lines show the monthly results; black lines are results after 3-month moving average; the dotted lines with black dots are annual averages, respectively

    图  6  研究海域2010−2019年间基于10年平均的涡动能(EKE)距平(a),净降水量(P−E)距平(b)和海冰密集度(SIC)距平(c)时间序列

    图a中灰色线代表日平均,黑色线代表以1个月为跨度实现的滑动平均结果;图b和图c中灰色线代表月平均,黑色线代表每3个月一次滑动平均的结果;红色线代表年平均,10年平均值标注于各分图右下角

    Fig.  6  Time series of anomalies of eddy kinetic energy (a), net precipitation (b) and sea ice concentration (c) based on 10-year averages over the study area for the period of 2010−2019

    Grey line in figure a represents the daily average and the black line represents the results after one-month moving average; grey lines in figure b and figure c represent monthly averages and the black line represents the result after 3-month moving average; red lines represent the annual averages, 10-year averages are marked at the right bottom corner of each subplot

    图  7  外部强迫年平均距平和WW核心温度距平的时间序列比较

    纵坐标左侧刻度、内部实线和圆点代表外部强迫距平;纵坐标右侧刻度、虚线和三角代表WW核心温度距平

    Fig.  7  Comparison of time series of annual external forcing anomalies and temperature anomalies of WW core

    The left axis, the internal solid line and dots represent external forcing anomalies; the right axis, the dashed line and the triangle represent WW core temperature anomalies

    图  8  外部强迫年平均距平和WW核心盐度距平的时间序列比较

    纵坐标左侧刻度、内部实线和圆点代表外部强迫距平;纵坐标右侧刻度、虚线和三角代表WW核心盐度距平

    Fig.  8  Comparison of time series of annual external forcing anomalies and salinity anomalies of WW core

    The left axis, the internal solid line and dots represent external forcing anomalies; the right axis, the dashed line and the triangle represent WW core salinity anomalies

    图  9  外部强迫年平均距平和WW厚度距平的时间序列比较

    纵坐标左侧刻度、内部实线和圆点代表外部强迫距平;纵坐标右侧刻度、虚线和三角代表WW厚度距平

    Fig.  9  Comparison of time series of annual external forcing anomalies and WW thickness anomalies

    The left axis, the internal solid line and dots represent external forcing anomalies; the right axis, the dashed line and the triangle represent WW thickness anomalies

    表  1  观测站位日期信息

    Tab.  1  Date information of observation stations

    纬度2011年2012年2013年2014年2015年2016年2017年2018年2019年2020年
    60°S${\underline {12月31日} }$1月3日1月6日1月19日1月18日1月23日1月7日1月8日1月9日1月15日
    61°S1月3日1月7日1月20日1月18日1月23日1月8日1月8日1月10日1月15日
    61.5°S1月17日
    62°S1月1日1月8日1月22日1月20日1月25日1月9日1月9日1月11日1月17日
    62.5°S1月8日1月20日1月18日
    63°S1月1日1月5日1月8日1月23日1月28日1月25日1月15日1月10日1月12日1月18日
    63.45°S1月17日
    63.5°S1月6日1月9日1月21日1月17日1月20日
    64°S1月1日1月6日1月9日1月23日1月21日1月26日1月10日1月16日1月20日
    64.24°S1月10日
    64.30°S1月9日
    64.5°S1月6日1月12日1月22日1月24日
    64.68°S1月12日
    65°S1月2日1月9日1月24日1月22日1月27日1月15日1月23日
    65.28°S1月11日
    注:2011年在60°S站点的观测日期为2010年12月31日,用下划线标注。
    下载: 导出CSV
  • [1] Rintoul S R, England M H. Ekman transport dominates local air-sea fluxes in driving variability of Subantarctic mode water[J]. Journal of Physical Oceanography, 2002, 32(5): 1308−1321. doi: 10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2
    [2] Williams R G. Ocean eddies and plankton blooms[J]. Nature Geoscience, 2011, 4(11): 739−740. doi: 10.1038/ngeo1307
    [3] Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55−109. doi: 10.1016/S0079-6611(99)00004-X
    [4] Speer K, Rintoul S R, Sloyan B. The diabatic Deacon cell[J]. Journal of Physical Oceanography, 2000, 30(12): 3212−3222. doi: 10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2
    [5] Rintoul S R, Sokolov S, Church J. A 6 year record of baroclinic transport variability of the Antarctic Circumpolar Current at 140°E derived from expendable bathythermograph and altimeter measurements[J]. Journal of Geophysical Research: Oceans, 2002, 107(C10): 19−1−19−22.
    [6] Broecker W S. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance?[J]. Science, 1997, 278(5343): 1582−1588. doi: 10.1126/science.278.5343.1582
    [7] Aoki S, Rintoul S R, Ushio S, et al. Freshening of the Adélie Land Bottom Water near 140°E[J]. Geophysical Research Letters, 2005, 32(23): L23601. doi: 10.1029/2005GL024246
    [8] Aoki S, Kitade Y, Shimada K, et al. Widespread freshening in the Seasonal Ice Zone near 140°E off the Adélie Land Coast, Antarctica, from 1994 to 2012[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 6046−6063. doi: 10.1002/2013JC009009
    [9] Aoki S, Katsumata K, Hamaguchi M, et al. Freshening of Antarctic bottom water off Cape Darnley, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2020JC016374.
    [10] Rintoul S R. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans[J]. Geophysical Research Letters, 2007, 34(6): L06606.
    [11] Johnson G C, Purkey S G, Bullister J L. Warming and freshening in the abyssal southeastern Indian Ocean[J]. Journal of Climate, 2008, 21(20): 5351−5363. doi: 10.1175/2008JCLI2384.1
    [12] Meredith M P, Garabato A C N, Gordon A L, et al. Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995−2005[J]. Journal of Climate, 2008, 21(13): 3327−3343. doi: 10.1175/2007JCLI2238.1
    [13] Jacobs S S, Giulivi C F. Large multidecadal salinity trends near the Pacific-Antarctic continental margin[J]. Journal of Climate, 2010, 23(17): 4508−4524. doi: 10.1175/2010JCLI3284.1
    [14] Purkey S G, Johnson G C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets[J]. Journal of Climate, 2010, 23(23): 6336−6351. doi: 10.1175/2010JCLI3682.1
    [15] Purkey S G, Johnson G C. Global contraction of Antarctic Bottom Water between the 1980s and 2000s[J]. Journal of Climate, 2012, 25(17): 5830−5844. doi: 10.1175/JCLI-D-11-00612.1
    [16] Fahrbach E, Hoppema M, Rohardt G, et al. Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: The Weddell gyre as a heat buffer[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58(25/26): 2509−2523.
    [17] Azaneu M, Kerr R, Mata M M, et al. Trends in the deep Southern Ocean (1958−2010): Implications for Antarctic Bottom Water properties and volume export[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4213−4227. doi: 10.1002/jgrc.20303
    [18] Gille S T. Decadal-scale temperature trends in the Southern Hemisphere ocean[J]. Journal of Climate, 2008, 21(18): 4749−4765. doi: 10.1175/2008JCLI2131.1
    [19] Böning C W, Dispert A, Visbeck M, et al. The response of the Antarctic Circumpolar Current to recent climate change[J]. Nature Geoscience, 2008, 1(12): 864−869. doi: 10.1038/ngeo362
    [20] Aoki S. Trends and interannual variability of surface layer temperature in the Indian Sector of the Southern Ocean observed by Japanese Antarctic Research expeditions[J]. Journal of Oceanography, 1997, 53(6): 623−631.
    [21] Aoki S, Yoritaka M, Masuyama A. Multidecadal warming of subsurface temperature in the Indian Sector of the Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2003, 108(C4): 8081. doi: 10.1029/2000JC000307
    [22] Siems S T, Huang Yi, Manton M J. Southern Ocean precipitation: toward a process-level understanding[J]. WIREs Climate Change, 2022, 13(6): e800.
    [23] Helm K P, Bindoff N L, Church J A. Changes in the global hydrological-cycle inferred from ocean salinity[J]. Geophysical Research Letters, 2010, 37(18): L18701.
    [24] Durack P J, Wijffels S E, Matear R J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000[J]. Science, 2012, 336(6080): 455−458. doi: 10.1126/science.1212222
    [25] Haumann F A, Gruber N, Münnich M, et al. Sea-ice transport driving Southern Ocean salinity and its recent trends[J]. Nature, 2016, 537(7618): 89−92. doi: 10.1038/nature19101
    [26] Hu Yuyi, Shao Weizeng, Li Jun, et al. Short-term variations in water temperature of the Antarctic surface layer[J]. Journal of Marine Science and Engineering, 2022, 10(2): 287. doi: 10.3390/jmse10020287
    [27] Auger M, Morrow R, Kestenare E, et al. Southern ocean in-situ temperature trends over 25 years emerge from interannual variability[J]. Nature Communications, 2021, 12(1): 1840. doi: 10.1038/s41467-021-22318-6
    [28] Robertson R, Visbeck M, Gordon A L, et al. Long-term temperature trends in the deep waters of the Weddell Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(21): 4791−4806. doi: 10.1016/S0967-0645(02)00159-5
    [29] Fahrbach E, Hoppema M, Rohardt G, et al. Decadal-scale variations of water mass properties in the deep Weddell Sea[J]. Ocean Dynamics, 2004, 54(1): 77−91. doi: 10.1007/s10236-003-0082-3
    [30] Jullion L, Jones S C, Garabato A C N, et al. Wind-controlled export of Antarctic Bottom Water from the Weddell Sea[J]. Geophysical Research Letters, 2010, 37(9): L09609.
    [31] Meredith M P, Gordon A L, Garabato A C N, et al. Synchronous intensification and warming of Antarctic Bottom Water outflow from the Weddell Gyre[J]. Geophysical Research Letters, 2011, 38(3): L03603.
    [32] Whitworth III T. Two modes of bottom water in the Australian-Antarctic Basin[J]. Geophysical Research Letters, 2002, 29(5): 17−1−17−3.
    [33] Purkey S G, Johnson G C. Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain[J]. Journal of Climate, 2013, 26(16): 6105−6122. doi: 10.1175/JCLI-D-12-00834.1
    [34] Van Wijk E M, Rintoul S R. Freshening drives contraction of Antarctic bottom water in the Australian Antarctic Basin[J]. Geophysical Research Letters, 2014, 41(5): 1657−1664. doi: 10.1002/2013GL058921
    [35] Menezes V V, Macdonald A M, Schatzman C. Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean[J]. Science Advances, 2017, 3(1): e1601426. doi: 10.1126/sciadv.1601426
    [36] Shimada K, Kitade Y, Aoki S, et al. Shoaling of abyssal ventilation in the Eastern Indian Sector of the Southern Ocean[J]. Communications Earth & Environment, 2022, 3(1): 120.
    [37] Castagno P, Capozzi V, DiTullio G R, et al. Rebound of shelf water salinity in the Ross Sea[J]. Nature Communications, 2019, 10(1): 5441. doi: 10.1038/s41467-019-13083-8
    [38] Silvano A, Foppert A, Rintoul S R, et al. Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies[J]. Nature Geoscience, 2020, 13(12): 780−786. doi: 10.1038/s41561-020-00655-3
    [39] Orsi A H, Whitworth III T, Nowlin W D Jr. On the meridional extent and fronts of the Antarctic Circumpolar Current[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(5): 641−673. doi: 10.1016/0967-0637(95)00021-W
    [40] Park Y H, Charriaud E, Fieux M. Thermohaline structure of the Antarctic surface water/winter water in the Indian Sector of the Southern Ocean[J]. Journal of Marine Systems, 1998, 17(1/4): 5−23.
    [41] Sabu P, Libera S A, Chacko R, et al. Winter water variability in the Indian Ocean Sector of Southern Ocean during austral summer[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 178: 104852. doi: 10.1016/j.dsr2.2020.104852
    [42] Shimada K, Aoki S, Ohshima K I. Creation of a gridded dataset for the Southern Ocean with a topographic constraint scheme[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(3): 511−532. doi: 10.1175/JTECH-D-16-0075.1
    [43] Shimada K, Makabe R, Takao S, et al. Physical and chemical oceanographic data during Umitaka-maru cruise of the 58th Japanese Antarctic Research Expedition in January 2017[J]. Polar Data Journal, 2020, 4: 1−29.
    [44] 李亚婧. 南极半岛周边海域水团性质及水交换特征的研究[D]. 青岛: 自然资源部第一海洋研究所, 2019.

    Li Yajing. Study on the properties and exchanges of water masses in the region of Antarctic Peninsula[D]. Qingdao: First Institute of Oceanography, MNR, 2019.
    [45] Amante C, Eakins B W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[R]. Boulder: National Oceanic and Atmospheric Administration, 2009.
    [46] Thompson D W J, Solomon S, Kushner P J, et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change[J]. Nature Geoscience, 2011, 4(11): 741−749. doi: 10.1038/ngeo1296
    [47] Schlosser E, Haumann F A, Raphael M N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay[J]. The Cryosphere, 2018, 12(3): 1103−1119. doi: 10.5194/tc-12-1103-2018
    [48] 严晨冰, 程灵巧, 朱国平. 南极斯科舍海涡旋分布及其内部水文结构特征分析[J]. 海洋学报, 2022, 44(3): 1−14.

    Yan Chenbing, Cheng Lingqiao, Zhu Guoping. Distribution and the internal hydrographic characteristics of eddies in the Scotia Sea, Antarctica[J]. Haiyang Xuebao, 2022, 44(3): 1−14.
    [49] 李等, 程灵巧, 严晨冰, 等. 基于2005−2019年卫星遥感观测的南大洋印度洋扇区中部涡旋特征分布研究[J]. 海洋与湖沼, 2022, 53(5): 1054−1066. doi: 10.11693/hyhz20220100005

    Li Deng, Cheng Lingqiao, Yan Chenbing, et al. Characteristics of eddies in the Central Indian Sector of the Southern Ocean based on satellite observation from 2005 to 2019[J]. Oceanologia et Limnologia Sinica, 2022, 53(5): 1054−1066. doi: 10.11693/hyhz20220100005
    [50] Wakatsuchi M, Ohshima K I, Hishida M, et al. Observations of a street of cyclonic eddies in the Indian Ocean Sector of the Antarctic divergence[J]. Journal of Geophysical Research: Oceans, 1994, 99(C10): 20417−20426. doi: 10.1029/94JC01478
    [51] Mizobata K, Shimada K, Aoki S, et al. The cyclonic eddy train in the Indian Ocean Sector of the Southern Ocean as revealed by satellite radar altimeters and in situ measurements[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2019JC015994.
    [52] Stuecker M F, Bitz C M, Armour K C. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season[J]. Geophysical Research Letters, 2017, 44(17): 9008−9019. doi: 10.1002/2017GL074691
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  164
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 修回日期:  2023-03-31
  • 网络出版日期:  2023-08-22
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回