留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国沿海和近海海平面上升预测

王慧 全梦媛 徐卫青 相文玺 李文善 江羽西

王慧,全梦媛,徐卫青,等. 中国沿海和近海海平面上升预测[J]. 海洋学报,2023,45(8):1–10 doi: 10.12284/hyxb2023096
引用本文: 王慧,全梦媛,徐卫青,等. 中国沿海和近海海平面上升预测[J]. 海洋学报,2023,45(8):1–10 doi: 10.12284/hyxb2023096
Wang Hui,Quan Mengyuan,Xu Weiqing, et al. Sea level rise projection in China’s coastal and offshore areas[J]. Haiyang Xuebao,2023, 45(8):1–10 doi: 10.12284/hyxb2023096
Citation: Wang Hui,Quan Mengyuan,Xu Weiqing, et al. Sea level rise projection in China’s coastal and offshore areas[J]. Haiyang Xuebao,2023, 45(8):1–10 doi: 10.12284/hyxb2023096

中国沿海和近海海平面上升预测

doi: 10.12284/hyxb2023096
基金项目: 国家重点研发计划课题
详细信息
    作者简介:

    王慧(1972-),女,山东省临沂市人,研究员,研究方向为潮汐、海平面与气候变化。E-mail: wh_cherry@126.com

    通讯作者:

    相文玺,研究员,研究方向为海洋管理、海洋信息技术等。E-mail: xwx@nmdis.org.cn

  • 中图分类号: P714+.1

Sea level rise projection in China’s coastal and offshore areas

  • 摘要: 本文利用验潮站观测和卫星高度计数据,以及基于筛选的CMIP6的10个模拟性能较好的地球系统模式结果,对中国海平面的长期变化趋势,以及未来上升幅度进行了分析和预测。结果显示:(1)1960−2021年,中国沿海海平面呈加速上升趋势,上升速率为2.5 mm/a,加速度为0.06 mm/a2;1993−2021年上升速率为4.0 mm/a,高于全球同期3.3 mm/a的上升值。(2)1980−2021年,渤、黄海,东海和南海沿海海平面上升速率分别为3.5 mm/a、3.3 mm/a和3.6 mm/a,渤、黄海和南海沿海海平面上升速率较快,东海偏慢;渤、黄海沿海海平面在20世纪60−70年代上升较慢,80年代之后上升加快。(3)在中等情景(SSP2-4.5)和高情景(SSP5-8.5)下,2050年中国近海海平面将上升0.22 m(0.19~0.28 m)和0.24 m(0.21~0.33 m);到2100年,中国近海海平面将上升0.59 m(0.47~0.80 m)和0.83 m(0.64~1.09 m)。(4)2021−2040年,统计预测的海平面上升中值略接近数值模式低、中和高情景预测值。2041−2060年,数值模式低、中和高情景预测值均介于统计预测的中值和高值之间。2081−2100年,统计预测的海平面上升高值与数值模式中情景预测值接近,绝对偏差为0.017 m,相对偏差为3.4%。(5)高情景下,2100年现有100年一遇的极端高海面将变为不足10年一遇,其中超过50%的站点将变为不足两年一遇,沿海防护工程等基础设施的防御能力降低,复合型滨海城市洪涝等灾害事件的风险增加。
  • 图  1  1993−2021年全球(80°S~80°N)卫星高度计海平面上升趋势空间分布

    图中黑色框形为本研究选取的中国近海区域

    Fig.  1  Spatial distribution of global (80°S−80°N) satellite altimeter sea level rise trend from 1993 to 2021

    Black box is the China offshore region

    图  2  1960−2021年中国沿海和近海海平面长期变化

    Fig.  2  Long term changes of China’s coastal and offshore areas sea level during 1960−2021

    图  3  渤、黄海,东海和南海沿海不同时期海平面长期变化趋势

    Fig.  3  Long term change trend of sea level in the Bohai Sea and Yellow Sea, East China Sea and South China Sea in different periods

    图  4  1993−2021年,EC-Earth3模式在涠洲(a)和大万山(b)海域历史海平面模拟结果与观测数据对比

    Fig.  4  Comparison of historical sea level simulation results of EC-Earth3 model and observation datain Weizhou (a) and Dawanshan (b) sea areas from 1993 to 2021

    图  5  中国近海及各海区海平面上升预测(相对于1995−2014年)

    Fig.  5  Prediction of sea level rise in China’s offshore and various sea areas (relative to 1995−2014)

    图  6  2020−2100年统计预测和集合预测结果比较

    Fig.  6  Comparison of statistical prediction and numerical prediction results from 2020 to 2100

    表  1  可应用于中国近海集合预测的CMIP6 模型

    Tab.  1  CMIP6 model that can be applied to China offshore collective forecasting

    序号模式机构国家/组织相关系数
    1EC-Earth3EC-EARTH-Cons欧盟0.77
    2EC-Earth3-Veg-LR EC-EARTH-Cons 欧盟0.67
    3CNRM-CM6CNRM法国0.70
    4CNRM-ESM2 CNRM 法国0.69
    5ACCESS-CM2CSIRO-BOM澳大利亚0.67
    6CanESM5CCCMA加拿大0.67
    7IPSL-CM6A-LRIPSL法国0.63
    8MPI-ESM1-2-HRMPI-M德国0.62
    9CMCC-CM2-SR5CMCC意大利0.66
    10CMCC-ESM2 CMCC意大利0.62
    11NorESM2-MMNCC挪威0.55
    12ACCESS-ESM1-5CSIRO-BOM澳大利亚0.56
    13MIROC6MIROC日本0.53
    14MPI-ESM1-2-LRMPI-M德国0.39
    15NorESM2-LMNCC挪威0.38
    下载: 导出CSV

    表  2  中国和各海区海平面上升预测值(单位:m)

    Tab.  2  Projection value of sea level rise in the China sea and other sea areas (unit: m)

    时间2050年 2100年
    情景SSP1-2.6SSP2-4.5SSP5-8.5SSP1-2.6SSP2-4.5SSP5-8.5
    渤、黄海0.160.170.20 0.300.470.67
    0.200.210.240.460.560.82
    0.260.270.330.630.761.08
    东海0.180.190.210.320.490.69
    0.230.220.250.490.610.86
    0.290.280.320.670.811.13
    南海0.150.180.200.320.480.64
    0.200.210.240.480.590.81
    0.220.270.320.650.801.07
    中国近海0.160.190.210.310.470.64
    0.210.220.240.470.590.83
    0.260.280.330.640.801.09
    注:相对于1995−2014年平均海平面。
    下载: 导出CSV

    表  3  3种SSPs情景下2100年中国近海海平面预测(相对于1995−2014年,单位:m)

    Tab.  3  Predictions of China’s offshore sea level in 2100 under three SSP scenarios (relative to 1995−2014, unit: m)

    SSP1-2.6SSP2-4.5SSP5-8.5
    比容加动力(贡献)0.18(38%)0.23(39%)0.33(40%)
    质量贡献(贡献)0.29(62%)0.36(61%)0.50(60%)
    总计0.470.590.83
    下载: 导出CSV

    表  4  中国沿海各省(自治区、直辖市)未来海平面变化预测(单位:m)

    Tab.  4  Predictions of future sea level change in China’s coastal provinces (autonomous regions and municipalities) (unit: m)

    行政区2030年2050年2060年2100年
    辽宁0.110.170.180.30
    河北0.120.170.190.32
    天津0.180.260.270.47
    山东0.110.180.220.37
    江苏0.100.170.200.37
    上海0.110.180.220.37
    浙江0.110.180.210.37
    福建0.080.120.150.27
    广东0.100.160.190.32
    广西0.060.100.120.22
    海南0.120.200.210.38
    全海域(低)0.060.100.120.22
    全海域(中)0.100.170.200.34
    全海域(高)0.180.290.340.55
    注:相对于1995−2014年平均海平面。
    下载: 导出CSV

    表  5  不同情景和重现期水平下的极端高海面(单位:m)

    Tab.  5  Extreme high sea level under different scenarios and return periods (unit: m)

    序号验潮站现代情景SSP2-4.5SSP5-8.5
    100年一遇20年一遇10年一遇100年一遇20年一遇10年一遇100年一遇10年一遇2年一遇
    1葫芦岛2.812.662.603.383.233.173.653.443.27
    2秦皇岛1.721.521.432.292.092.002.562.272.04
    3龙口2.372.031.882.942.602.453.212.722.33
    4烟台2.462.182.063.032.752.633.302.902.58
    5日照3.132.922.823.703.493.393.973.663.41
    6吕四4.854.374.155.464.984.765.735.034.47
    7大戢山3.493.223.114.103.833.724.373.993.68
    8镇海3.402.932.734.013.543.344.283.613.08
    9坎门5.094.504.245.705.114.855.975.124.45
    10三沙4.364.003.854.974.614.465.244.734.32
    11厦门4.163.883.754.774.494.365.044.634.30
    12汕尾2.231.931.802.822.522.393.042.612.26
    13闸坡2.882.552.413.473.143.003.693.222.85
    14海口2.692.201.993.282.792.583.502.802.24
    15北海3.413.173.064.003.763.654.223.873.60
    下载: 导出CSV
  • [1] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021: 2391.
    [2] Dangendorf S, Hay C, Calafat F M, et al. Persistent acceleration in global sea-level rise since the 1960s[J]. Nature Climate Change, 2019, 9(9): 705−710. doi: 10.1038/s41558-019-0531-8
    [3] World Meteorological Organization. State of the global climate 2021[R]. Geneva: World Meteorological Organization, 2022.
    [4] IPCC. Sea level change[M]//Stocker T, Qin D, Plattner G, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 1137−1216.
    [5] Oppenheimer M, Glavovic B C, Hinkel J, et al. Sea level rise and implications for low-lying islands, coasts and communities[M]//Pörtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2019: 321−445.
    [6] IPCC. Summary for policymakers[M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 3−29.
    [7] Church J A, White N J. Sea-level rise from the late 19th to the early 21st century[J]. Surveys in Geophysics, 2011, 32(4): 585−602. doi: 10.1007/s10712-011-9119-1
    [8] IPCC. Summary for policymakers[M]//Pörtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge: Cambridge University Press, 2019.
    [9] 自然资源部. 2021年中国海平面公报[R]. 北京: 自然资源部, 2022.

    Ministry of Natural Resources. 2021 China sea level bulletin[R]. Beijing: Ministry of Natural Resources, 2022.
    [10] Merrifield M A, Thompson P R, Lander M. Multidecadal sea level anomalies and trends in the western tropical Pacific[J]. Geophysical Research Letters, 2012, 39(13): L13602. doi: 10.1029/2012gl052032
    [11] Zhang Xuebin, Church J A. Sea level trends, interannual and decadal variability in the Pacific Ocean[J]. Geophysical Research Letters, 2012, 39(21): L21701. doi: 10.1029/2012GL053240
    [12] Stammer D, Cazenave A, Ponte R M, et al. Causes for contemporary regional sea level changes[J]. Annual Review of Marine Science, 2013, 5(1): 21−46. doi: 10.1146/annurev-marine-121211-172406
    [13] Gregory J M, Andrews T, Ceppi P, et al. How accurately can the climate sensitivity to CO2 be estimated from historical climate change?[J]. Climate Dynamics, 2020, 54(1): 129−157.
    [14] Van Breedam J, Goelzer H, Huybrechts P. Semi-equilibrated global sea-level change projections for the next 10 000 years[J]. Earth System Dynamics, 2020, 11(4): 953−976. doi: 10.5194/esd-11-953-2020
    [15] IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2022: 3056.
    [16] 陈长霖. 全球海平面长期趋势变化及气候情景预测研究[D]. 青岛: 中国海洋大学, 2010.

    Chen Changlin. Long term trends in global sea level analyses and predictions[D]. Qingdao: Ocean University of China, 2010.
    [17] 罗凤云. 21世纪东中国海海平面变化预测研究[D]. 舟山: 浙江海洋大学, 2020.

    Luo Fengyun. Study on sea level changes of the East China Sea for the 21st century[D]. Zhoushan: Zhejiang Ocean University, 2020.
    [18] 张吉, 左军成, 李娟, 等. RCP4.5情景下预测21世纪南海海平面变化[J]. 海洋学报, 2014, 36(11): 21−29. doi: 10.3969/j.issn.0253-4193.2014.11.003

    Zhang Ji, Zuo Juncheng, Li Juan, et al. Sea level variations in the South China Sea during the 21st Century under RCP4.5[J]. Haiyang Xuebao, 2014, 36(11): 21−29. doi: 10.3969/j.issn.0253-4193.2014.11.003
    [19] Huang Chuanjiang, Qiao Fangli. Sea level rise projection in the South China Sea from CMIP5 models[J]. Acta Oceanologica Sinica, 2015, 34(3): 31−41. doi: 10.1007/s13131-015-0631-x
    [20] 王慧, 刘秋林, 李欢, 等. 海平面变化研究进展[J]. 海洋信息, 2018, 33(3): 19−25, 54.

    Wang Hui, Liu Qiulin, Li Huan, et al. Latest research and progress on sea level change[J]. Marine Information, 2018, 33(3): 19−25, 54.
    [21] 刘睿, 刘晓东, 刘恒. 基于CMIP5多模式集合预估东海和南海21世纪海平面高度变化[J]. 地球环境学报, 2020, 11(4): 412−428.

    Liu Rui, Liu Xiaodong, Liu Heng. Projection of the 21st century sea level change in East China Sea and South China Sea based on CMIP5 model results[J]. Journal of Earth Environment, 2020, 11(4): 412−428.
    [22] 王慧, 刘克修, 范文静. 渤海西部海平面资料均一性订正及变化特征[J]. 海洋通报, 2013, 32(3): 256−264.

    Wang Hui, Liu Kexiu, Fan Wenjing. Data uniformity revision and variations of the sea level of the western Bohai Sea[J]. Marine Science Bulletin, 2013, 32(3): 256−264.
    [23] WCRP Global Sea Level Budget Group. Global sea-level budget 1993-present[J]. Earth System Science Data, 2018, 10(3): 1551−1590. doi: 10.5194/essd-10-1551-2018
    [24] 李薇, 张学洪, 金向泽. 海洋环流模式中不同近似假设下的海表高度[J]. 海洋科学进展, 2003, 21(2): 132−141.

    Li Wei, Zhang Xuehong, Jin Xiangze. Sea level height on different approximations assumptions in ocean circulation models[J]. Advances in Marine Science, 2003, 21(2): 132−141.
    [25] 黄禄丰, 朱再春, 黄萌田, 等. 基于CMIP6模式优化集合平均预估21世纪全球陆地生态系统总初级生产力变化[J]. 气候变化研究进展, 2021, 17(5): 514−524.

    Huang Lufeng, Zhu Zaichun, Huang Mengtian, et al. Projection of gross primary productivity change of global terrestrial ecosystem in the 21st century based on optimal ensemble averaging of CMIP6 models[J]. Climate Change Research, 2021, 17(5): 514−524.
    [26] 左军成, 陈宗镛, 周天华. 中国沿岸海平面变化的一种本征分析和随机动态联合模型[J]. 海洋学报, 1996, 18(2): 7−14.

    Zuo Juncheng, Chen Zongyong, Zhou Tianhua. A combined model of intrinsic analysis and stochastic dynamics for sea level changes along the coast of China[J]. Haiyang Xuebao, 1996, 18(2): 7−14.
    [27] 方国洪, 郑文振, 陈宗镛, 等. 潮汐和潮流的分析和预报[M]. 北京: 海洋出版社, 1986.

    Fang Guohong, Zheng Wenzhen, Chen Zongyong, et al. Analysis and Prediction of Tides and Tidal Currents[M]. Beijing: China Ocean Press, 1986.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  911
  • HTML全文浏览量:  311
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-28
  • 修回日期:  2023-03-30
  • 网络出版日期:  2023-08-31
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回