留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SAR子孔径分解的海表面二维流场反演

张佳辉 苗洪利 杨忠昊 刘昆池

张佳辉,苗洪利,杨忠昊,等. 基于SAR子孔径分解的海表面二维流场反演[J]. 海洋学报,2023,45(8):24–30 doi: 10.12284/hyxb2023094
引用本文: 张佳辉,苗洪利,杨忠昊,等. 基于SAR子孔径分解的海表面二维流场反演[J]. 海洋学报,2023,45(8):24–30 doi: 10.12284/hyxb2023094
Zhang Jiahui,Miao Hongli,Yang Zhonghao, et al. Two-dimensional sea surface current field inversion based on SAR sub-aperture decomposition[J]. Haiyang Xuebao,2023, 45(8):24–30 doi: 10.12284/hyxb2023094
Citation: Zhang Jiahui,Miao Hongli,Yang Zhonghao, et al. Two-dimensional sea surface current field inversion based on SAR sub-aperture decomposition[J]. Haiyang Xuebao,2023, 45(8):24–30 doi: 10.12284/hyxb2023094

基于SAR子孔径分解的海表面二维流场反演

doi: 10.12284/hyxb2023094
基金项目: 国家自然科学重点基金(62031005);山东省自然科学基金(ZR2020MD097)。
详细信息
    作者简介:

    张佳辉(1998-),男,山东省青岛市人,主要从事海洋微波遥感研究。E-mail: zhangjiahui@stu.ouc.edu.cn

    通讯作者:

    苗洪利(1964-),男,山东省青岛市人,教授,主要从事海洋微波遥感研究。E-mail: oumhl@ouc.edu.cn

  • 中图分类号: P714+.1;P731.21

Two-dimensional sea surface current field inversion based on SAR sub-aperture decomposition

  • 摘要: 对Radarsat-2和Sentinel-1A分别观测的两个海域的单景SAR图像进行子孔径分解,各自得到不同方位角上的两幅SAR子孔径图像。使用多普勒质心频移法分别对不同方位角的两幅SAR图像进行海流反演,并进行海流矢量合成,采用经过时空匹配的HYCOM模式数据对反演结果进行检验,结果表明:Radarsat-2观测的SAR图像分解的两幅子孔径SAR图像矢量合成后的海流与HYCOM模式数据相比,速度均方根值为0.09 m/s,相关系数为0.64;方向均方根值为10.49°,相关系数为0.78。Sentinel-1A观测的SAR图像分解的两幅子孔径SAR图像矢量合成后的海流与HYCOM模式数据相比,速度均方根值为0.06 m/s,相关系数为0.82;方向均方根值为2.85°,相关系数为0.86。由此可见,基于单景SAR分解的两幅子孔径SAR图像可以有效反演二维海流。其反演精度与雷达视向和真实海流矢量的方向有关,二者的角度越小,反演海流矢量的精度越高。
  • 图  1  子孔径分解流程

    Fig.  1  Sub-aperture decomposition flowchart

    图  2  流速矢量几何关系

    Fig.  2  Geometric relation of current velocity vector

    图  3  Radarsat-2卫星全孔径SAR强度图

    Fig.  3  Full-aperture SAR intensity image of Radarsat-2 satellite

    图  4  Sentinel-1A卫星全孔径SAR强度图

    Fig.  4  Full-aperture SAR intensity image of Sentinel-1A satellite

    图  5  分解后各子孔径SAR图像

    Fig.  5  SAR images of each sub-aperture after decomposition

    图  6  全孔径雷达视向海流

    Fig.  6  Sea surface current at full-aperture radar looking direction

    图  7  子孔径海表面流图

    Fig.  7  Sea surface current of sub-aperture images

    图  8  SAR反演的海流矢量与HYCOM海流矢量对比图

    Fig.  8  Comparison diagram of SAR inverted current vector and HYCOM current vector

    图  9  反演海流矢量与HYCOM值散点图

    Fig.  9  Scatter plots of inverted current vector and HYCOM values

    图  10  SAR反演的海流矢量与HYCOM海流矢量对比图

    Fig.  10  Comparison diagram of SAR inverted current vector and HYCOM current vector

    图  11  合成海流矢量与HYCOM值相关散点图

    Fig.  11  Scatter plots of synthesized current vector and HYCOM values

    表  1  反演海流矢量与HYCOM值统计结果

    Tab.  1  Statistical results of inverted current vector and HYCOM values

    速度方向
    平均偏差−0.08 m/s9.98°
    均方根差0.09 m/s10.49°
    相关系数0.640.78
    下载: 导出CSV

    表  2  合成海流矢量与HYCOM值统计结果

    Tab.  2  Statistical results of synthesized current vector and HYCOM values

    速度方向
    平均偏差−0.05 m/s2.72°
    均方根差0.06 m/s2.85°
    相关系数0.820.86
    下载: 导出CSV
  • [1] Chapron B, Collard F, Ardhuin F. Direct measurements of ocean surface velocity from space: interpretation and validation[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07008.
    [2] Goldstein R M, Zebker H A. Interferometric radar measurement of ocean surface currents[J]. Nature, 1987, 328(6132): 707−709. doi: 10.1038/328707a0
    [3] Yuan Xinzhe, Lin Mingsen, Han Bing, et al. Observing sea surface current by gaofen-3 satellite along-track interferometric SAR experimental mode[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7762−7770. doi: 10.1109/JSTARS.2021.3099105
    [4] Yoshida T, Ouchi K, Yang C S. Application of MA-ATI SAR for estimating the direction of moving water surface currents in Pi-SAR2 images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2724−2730. doi: 10.1109/JSTARS.2021.3060008
    [5] Yoshida T, Ouchi K, Yang C S. Validation of MA-ATI SAR theory using numerical simulation for estimating the direction of moving targets and ocean currents[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 677−681. doi: 10.1109/LGRS.2020.2983160
    [6] Li Yan, Chong Jinsong, Li Zongze. A simulation method of two-dimensional sea-surface current field for trajectory crossing spaceborne SAR[J]. Applied Sciences, 2022, 12(12): 5900. doi: 10.3390/app12125900
    [7] 候富城, 孟俊敏, 张晰, 等. 利用多普勒频移反演ASAR海表面流速[J]. 海洋科学进展, 2019, 37(2): 274−283. doi: 10.3969/j.issn.1671-6647.2019.02.011

    Hou Fucheng, Meng Junmin, Zhang Xi, et al. Using the doppler shift method to retrieve the ASAR sea surface velocity[J]. Advances in Marine Science, 2019, 37(2): 274−283. doi: 10.3969/j.issn.1671-6647.2019.02.011
    [8] 张夏荣, 黄云仙, 赵现斌. 基于星载SAR多普勒速度反演海表流场算法的研究[J]. 气象水文海洋仪器, 2016, 33(1): 1−7. doi: 10.19441/j.cnki.issn1006-009x.2016.01.001

    Zhang Xiarong, Huang Yunxian, Zhao Xianbin. Study of ocean surface current inversion algorithm based on space-borne synthetic aperture radar dopplervelocity[J]. Meteorological, Hydrological and Marine Instruments, 2016, 33(1): 1−7. doi: 10.19441/j.cnki.issn1006-009x.2016.01.001
    [9] 杨小波. 基于ASAR的时变海表面流场反演研究[D]. 上海: 上海海洋大学, 2016.

    Yang Xiaobo. Sea surface current retrieval based on ASAR data[D]. Shanghai: Shanghai Ocean University, 2016.
    [10] 宋小霞, 王静, 储小青. 基于多普勒频移的SAR海表流场反演[J]. 遥感技术与应用, 2019, 34(2): 293−302.

    Song Xiaoxia, Wang Jing, Chu Xiaoqing. Estimation of sea surface velocities from SAR images using the Doppler shift[J]. Remote Sensing Technology and Application, 2019, 34(2): 293−302.
    [11] Mouche A A, Collard F, Chapron B, et al. On the use of Doppler shift for sea surface wind retrieval from SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2901−2909. doi: 10.1109/TGRS.2011.2174998
    [12] 马琳, 潘宗序, 黄钟泠, 等. 基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别[J]. 雷达学报, 2021, 10(1): 159−172. doi: 10.12000/JR20106

    Ma Lin, Pan Zongxu, Huang Zhongling, et al. Multichannel false-target discrimination in SAR images based on sub-aperture and full-aperture feature learning[J]. Journal of Radars, 2021, 10(1): 159−172. doi: 10.12000/JR20106
    [13] Ferro-Famil L, Reigber A, Pottier E, et al. Scene characterization using sub-aperture polarimetric SAR data analysis[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Toronto: IEEE, 2002: 417−419.
    [14] Li Yan, Chong Jinsong, Sun Kai, et al. Accuracy and error analysis of vector measurement of ocean surface current by multi-aperture along-track interferometric SAR[J]. IEEE Access, 2020, 8: 207551−207562. doi: 10.1109/ACCESS.2020.3038449
    [15] Li Yan, Chong Jinsong, Sun Kai, et al. Measuring ocean surface current in the kuroshio region using gaofen-3 SAR data[J]. Applied Sciences, 2021, 11(16): 7656. doi: 10.3390/app11167656
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  81
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-03-23
  • 网络出版日期:  2023-08-18
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回