Distribution and development characteristics of submarine pockmarks on the south side of Riji Reef
-
摘要: 海底麻坑是地层中流体沿着运移通道溢出海底,侵蚀海底沉积物形成的凹陷地貌。本文利用最新获取的船测高分辨率水深数据和浅地层剖面数据,对南海日积礁南侧海底麻坑分布及其发育规律进行了研究。基于高分辨率地貌学特征和浅地层剖面规律识别并统计了区内219个总体规模较大的麻坑,经分析发现,海水水深和麻坑规模具有较弱相关性:水深与麻坑直径、坑深呈不明显正相关,直径与内壁坡度呈不明显负相关。揭示了区内特殊地貌和麻坑的分布、形态、变化之间的内在关系:圆形和椭圆形普通麻坑多分布于海丘丘顶部位;半月型大型麻坑多分布于海丘中下部;而串珠状拉长型巨型麻坑则主要分布于深海丘间峡谷。本区麻坑形态和规模从丘顶到峡谷的变化直接对应了麻坑不同阶段的发育过程,其本质受区内构造和动力学控制。Abstract: Submarine pockmark is a depression landform formed by fluid spilling out of the seabed along the migration path and eroding the seafloor sediments. In this paper, the distribution and development of pockmarks on the south side of Riji Reef in the South China Sea are studied by using high-resolution bathymetric data and sub-bottom profile data. Based on the characteristics of high-resolution geomorphology and the laws of sub-bottom profile, 219 large scale pockmarks in the area were identified and counted, there is weak correlation between seawater depth and pockmark scale: seawater depth has no obvious positive correlation with diameter and depth of pockmark, and has no obvious negative correlation with inner slope of pockmark. It reveals the internal relationship between the special geomorphology and the distribution, shape and change of pockmark: the round and elliptical pockmarks are mostly distributed on the top of the sea knoll, the half-moon type pockmarks are mostly distributed in the middle and lower part of the sea knoll, while the bead-like elongated type pockmarks are mainly distributed in the canyon between the deep sea knolls. It is concluded that the change of the pockmark shape and scale which are from the top of the sea knoll to the canyon directly corresponds to the development process of the pockmark in different stages, and that the pockmarks are essentially influenced by the tectonics and dynamics control of the area.
-
Key words:
- pockmark /
- tectonic geomorphology /
- genesis /
- evolution
-
表 1 研究区各类型麻坑数量
Tab. 1 Various types of pockmarks quantity in the study area
麻坑形态 个数 不同规模麻坑数量/个 不同剖面形态麻坑数量/个 普通 大型 巨型 U型 V型 W型 圆形 15 6 3 6 10 3 2 椭圆形 113 29 18 66 82 21 10 拉长形 25 1 2 22 10 2 13 新月形 66 1 6 59 0 0 66 总计 219 37 29 153 102 26 91 表 2 世界海底麻坑尺寸和水深
Tab. 2 Submarine pockmark size and water depth in the world
麻坑所在地区 水深/m 直径/m 坑深/m 数据
来源最小 最大 最小 最大 平均值 最小 最大 平均值 中建南盆地北部 100 1 500 1 500 7 900 / 20 200 / 文献[28] 中建南盆地中部 / 1 600 2 000 3 000 / 1 00 200 / 文献[28] 中建南盆地南部 800 1 400 500 1 500 / 50 150 / 文献[28] 中建南盆地北斜坡 / 1 000 / / 1 000 / / 100 文献[28] 北黄海盆地 48 58.1 200 3 800 940 0.3 2.5 / 文献[40] 北黄海 20 60 550 2 500 / / / 0.5 文献[18] 舟山群岛
附近海域20 50 130 500 / / / 27 文献[20] 礼乐盆地 600 1 300 325 2 402 874 4.5 105 33 文献[29] 琼东南盆地 / 170 400 1 200 600 4 18 10 文献[26] 莺歌海盆地 / 100 5 26 / 0.5 6.7 / 文献[26] 莺东斜坡带 10 50 0.5 2 / 0.5 1 / 文献[26] 西沙海域隆起区 350 1 100 870 3 210 1 640 / 165.2 96.7 文献[39] 西沙海台 / 600 / / 600 20 30 / 文献[39] 西沙群岛西 / 800 1 000 2 000 / 100 200 / 文献[39] 广乐隆起北 / 470 500 1 000 / 20 50 / 文献[28] 广乐隆起南 / 450 / / 1 000 20 60 / 文献[28] 西非木泥河盆地 800 1 600 250 440 / 20 60 / 文献[16] 尼日尔三角洲盆地 1 000 2 000 40 1 000 / / / 150 文献[17] 挪威边缘海中部 600 800 35 320 / / / 15 文献[41] 挪威奥斯陆峡湾 14 71 20 50 / 2 10 / 文献[21] 非洲西部浅水区 75 800 300 600 / 20 30 / 文献[38] 非洲西部深水区 540 1 800 50 1 500 / 20 95 / 文献[38] 印度西部大陆边缘 145 330 70 514 157 50 136 83 文献[13] 外马里盆地 1 000 1 400 500 4 000 / 50 200 / 文献[42] 丹麦北海 1 000 2 500 / / 2 500 / / 30 文献[43] 注:“/”表示没有收集到数据。 -
[1] Judd A, Hovland M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2007. [2] 罗敏, 吴庐山, 陈多福. 海底麻坑研究现状及进展[J]. 海洋地质前沿, 2012, 28(5): 33−42.Luo Min, Wu Lushan, Chen Duofu. Research status and progress of seabed pockmarks[J]. Marine Geology Frontiers, 2012, 28(5): 33−42. [3] Riboulot V, Cattaneo A, Sultan N, et al. Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria[J]. Earth and Planetary Science Letters, 2013, 375: 78−91. doi: 10.1016/j.jpgl.2013.05.013 [4] King L H, Maclean B. Pockmarks on the Scotian Shelf[J]. GSA Bulletin, 1970, 81(10): 3141−3148. doi: 10.1130/0016-7606(1970)81[3141:POTSS]2.0.CO;2 [5] Nelson H, Thor D R, Sandstrom M W, et al. Modern biogenic gas-generated craters (sea-floor “pockmarks”) on the Bering Shelf, Alaska[J]. GSA Bulletin, 1979, 90(12): 1144−1152. doi: 10.1130/0016-7606(1979)90<1144:MBGCSP>2.0.CO;2 [6] Hovland M. Characteristics of pockmarks in the Norwegian Trench[J]. Marine Geology, 1981, 39(1/2): 103−117. [7] Hovland M, Judd A G, King L H. Characteristic features of pockmarks on the North Sea Floor and Scotian Shelf[J]. Sedimentology, 1984, 31(4): 471−480. doi: 10.1111/j.1365-3091.1984.tb01813.x [8] Hovland M, Talbot M R, Qvale H, et al. Methane-related carbonate cements in pockmarks of the North Sea[J]. Journal of Sedimentary Research, 1987, 57(5): 881−892. [9] Bussmann I, Suess E. Groundwater seepage in Eckernförde Bay (Western Baltic Sea): Effect on methane and salinity distribution of the water column[J]. Continental Shelf Research, 1998, 18(14/15): 1795−1806. [10] Ergün M, Dondurur D, Çifçi G. Acoustic evidence for shallow gas accumulations in the sediments of the Eastern Black Sea[J]. Terra Nova, 2002, 14(5): 313−320. doi: 10.1046/j.1365-3121.2002.00434.x [11] Çifçi G, Dondurur D, Ergün M. Deep and shallow structures of large pockmarks in the Turkish shelf, Eastern Black Sea[J]. Geo-Marine Letters, 2003, 23(3): 311−322. [12] Sumida P Y G, Yoshinaga M Y, Madureira L A S P, et al. Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin[J]. Marine Geology, 2004, 207(1/4): 159−167. [13] Dandapath S, Chakraborty B, Karisiddaiah S M, et al. Morphology of pockmarks along the western continental margin of India: employing multibeam bathymetry and backscatter data[J]. Marine and Petroleum Geology, 2010, 27(10): 2107−2117. doi: 10.1016/j.marpetgeo.2010.09.005 [14] MacDonald I R, Leifer I, Sassen R, et al. Transfer of hydrocarbons from natural seeps to the water column and atmosphere[J]. Geofluids, 2002, 2(2): 95−107. doi: 10.1046/j.1468-8123.2002.00023.x [15] Brothers L L, Kelley J T, Belknap D F, et al. More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: implications for pockmark field longevity[J]. Geo-Marine Letters, 2011, 31(4): 237−248. doi: 10.1007/s00367-011-0228-0 [16] 李磊, 裴都, 都鹏燕, 等. 海底麻坑的构型、特征、演化及成因——以西非木尼河盆地陆坡为例[J]. 海相油气地质, 2013, 18(4): 53−58.Li Lei, Pei Du, Du Pengyan, et al. Architecture, character, evolution and genesis of seabed pockmarks: a case study to the continental slope in Rio Muni Basin, West Africa[J]. Marine Origin Petroleum Geology, 2013, 18(4): 53−58. [17] 杨志鹏, 李磊, 张威, 等. 海底麻坑表征及成因研究——以尼日尔三角洲为例[J]. 海洋地质与第四纪地质, 2020, 40(6): 61−70.Yang Zhipeng, Li Lei, Zhang Wei, et al. Characteristics and genesis of submarine pockmarks—A case from the Niger Delta[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 61−70. [18] 刘晓瑜, 冯秀丽, 陈义兰, 等. 北黄海海底麻坑群形态的定量研究及控制因素[J]. 海洋学报, 2018, 40(3): 36−49.Liu Xiaoyu, Feng Xiuli, Chen Yilan, et al. Quantitative study of morphological features and control factors of seabed pockmarks in the North Yellow Sea[J]. Haiyang Xuebao, 2018, 40(3): 36−49. [19] 刘晓瑜, 陈义兰, 路波, 等. 北黄海长山群岛外海底环状微洼地地貌特征[J]. 海洋学研究, 2013, 31(1): 59−65.Liu Xiaoyu, Chen Yilan, Lu Bo, et al. Geographic features of the micro ring depreesions to the south of Changshan Archipelago at the North Yellow Sea[J]. Journal of Marine Sciences, 2013, 31(1): 59−65. [20] 杨婧荷, 来向华, 陈中轩. 舟山群岛东部青浜岛海域海底麻坑地貌及其成因分析[J]. 应用海洋学学报, 2021, 40(2): 251−259.Yang Jinghe, Lai Xianghua, Chen Zhongxuan. Pockmarks and their genesis in Qingbang Island waters of eastern Zhoushan Archipelago[J]. Journal of Applied Oceanography, 2021, 40(2): 251−259. [21] Webb K E, Hammer Ø, Lepland A, et al. Pockmarks in the inner Oslofjord, Norway[J]. Geo-Marine Letters, 2009, 29(2): 111−124. doi: 10.1007/s00367-008-0127-1 [22] 李昂, 蔡峰, 吴能友, 等. 冲绳海槽中部海底气体排放分布特征及其控制因素[J]. 海洋地质与第四纪地质, 2020, 40(5): 118−126.Li Ang, Cai Feng, Wu Nengyou, et al. Distribution of the gas vents at the seabed of the Mid-Okinawa Trough and their controlling factors[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 118−126. [23] Sultan N, Marsset B, Ker S, et al. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B8): B08101. [24] Salmi M S, Johnson H P, Leifer I, et al. Behavior of methane seep bubbles over a pockmark on the Cascadia continental margin[J]. Geosphere, 2011, 7(6): 1273−1283. doi: 10.1130/GES00648.1 [25] Roy S, Hovland M, Braathen A. Evidence of fluid seepage in Grønfjorden, Spitsbergen: implications from an integrated acoustic study of seafloor morphology, marine sediments and tectonics[J]. Marine Geology, 2016, 380: 67−78. doi: 10.1016/j.margeo.2016.07.002 [26] 拜阳, 宋海斌, 关永贤, 等. 利用反射地震和多波束资料研究南海西北部麻坑的结构特征与成因[J]. 地球物理学报, 2014, 57(7): 2208−2222.Bai Yang, Song Haibin, Guan Yongxian, et al. Structural characteristics and genesis of pockmarks in the northwest of the South China Sea derived from reflective seismic and multibeam data[J]. Chinese Journal of Geophysics, 2014, 57(7): 2208−2222. [27] 陈江欣, 关永贤, 宋海斌, 等. 麻坑、泥火山在南海北部与西部陆缘的分布特征和地质意义[J]. 地球物理学报, 2015, 58(3): 919−938.Chen Jiangxin, Guan Yongxian, Song Haibin, et al. Distribution characteristics and geological implications of pockmarks and mud volcanoes in the northern and western continental margins of the South China Sea[J]. Chinese Journal of Geophysics, 2015, 58(3): 919−938. [28] 汪灵, 王彬, 李健, 等. 中建南盆地北部海底麻坑地貌特征及成因机制[J]. 热带海洋学报, 2021, 40(5): 72−84.Wang Ling, Wang Bin, Li Jian, et al. Morphology characteristics and formation mechanisms of submarine pockmarks in the northern Zhongjiannan Basin, South China Sea[J]. Journal of Tropical Oceanography, 2021, 40(5): 72−84. [29] 张田升, 吴自银, 赵荻能, 等. 南海礼乐盆地海底麻坑地貌及成因分析[J]. 海洋学报, 2019, 41(3): 106−120.Zhang Tiansheng, Wu Ziyin, Zhao Dineng, et al. The morphologies and genesis of pockmarks in the Reed Basin, South China Sea[J]. Haiyang Xuebao, 2019, 41(3): 106−120. [30] 詹文欢, 孙宗勋, 张乔民, 等. 南沙群岛海区珊瑚礁灾害性地质分析[J]. 热带海洋学报, 2002, 21(2): 58−65.Zhan Wenhuan, Sun Zongxun, Zhang Qiaomin, et al. Hazardous geology of coral reefs in southern South China Sea[J]. Journal of Tropical Oceanography, 2002, 21(2): 58−65. [31] 赵焕庭, 温孝胜, 孙宗勋, 等. 南沙群岛区域地质地貌与古海洋[J]. 热带地理, 1995, 15(2): 128−137.Zhao Huanting, Wen Xiaosheng, Sun Zongxun, et al. Regional geology, geomorphology and paleooceanography of the Nansha Islands[J]. Tropical Geography, 1995, 15(2): 128−137. [32] 钟建强. 南沙群岛含油气盆地的前新生代基底及与北部陆缘的关系[J]. 中国海上油气(地质), 1997, 11(2): 124−130.Zhong Jianqiang. Precenozoic basement of oil and gas bearing basins in Nansha Islands and its relationship with north continental margin[J]. China Offshore Oil and Gas (Geology), 1997, 11(2): 124−130. [33] 吴自银, 温珍河. 中国近海海洋地质[M]. 北京: 科学出版社, 2021.Wu Ziyin, Wen Zhenhe. Marine Geology of China Seas[M]. Beijing: Science Press, 2021. [34] 钟建强. 南沙群岛新构造分区及其稳定性初步分析[J]. 东海海洋, 1998, 16(1): 19−25.Zhong Jianqiang. Preliminary study on zonation of neotectonics and regional stability in Nansha Islands[J]. Donghai Marine Science, 1998, 16(1): 19−25. [35] 吴自银, 阳凡林, 罗孝文, 等. 高分辨率海底地形地貌——探测处理理论与技术[M]. 北京: 科学出版社, 2017.Wu Ziyin, Yang Fanlin, Luo Xiaowen, et al. High−Resolution Submarine Geomorphology—Theory and Technology for Surveying and Post-Processing[M]. Beijing: Science Press, 2017. [36] 吴自银, 阳凡林, 罗孝文, 等. 高分辨率海底地形地貌——可视计算与科学应用[M]. 北京: 科学出版社, 2017.Wu Ziyin, Yang Fanlin, Luo Xiaowen, et al. High-Resolution Submarine Geomorphology—Visual Computation and Scientific Applications[M]. Beijing: Science Press, 2017. [37] Wu Ziyin, Yang Fanlin, Tang Yong, et al. High-Resolution Seafloor Survey and Applications[M]. Beijing: Science Press, 2020. [38] Pilcher R, Argent J. Mega-pockmarks and linear pockmark trains on the West African continental margin[J]. Marine Geology, 2007, 244(1/4): 15−32. [39] Sun Qiliang, Wu Shiguo, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(6): 1146−1156. doi: 10.1016/j.marpetgeo.2011.03.003 [40] 陈珊珊, 陆凯, 孙启良, 等. 北黄海西部海域特殊形态麻坑的形成机制研究[C]//中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会文集. 西安: 中国矿物岩石地球化学学会, 2017: 1016.Chen Shanshan, Lu Kai, Sun Qiliang, et al. Study on formation mechanism of special shape pockmarks in the western waters of the North Yellow Sea[C]//Proceedings of the 16th Annual Academic Conference and the 9th Committee Meeting of Chinese Society for Mineralogy, Petrology and Geochemister. Xi’an: Chinese Society for Mineralogy, Petrology and Geochemistry, 2017: 1016. [41] 冯先翠, 王伟, 王文倩, 等. 挪威海Nyegga麻坑区的甲烷成因自生碳酸盐岩[J]. 地球化学, 2015, 44(4): 348−359.Feng Xiancui, Wang Wei, Wang Wenqian, et al. Methane-derived authigenic carbonates in Nyegga pockmarks, offshore Mid-Norway[J]. Geochimica, 2015, 44(4): 348−359. [42] Cole D, Stewart S A, Cartwright J A. Giant irregular pockmark craters in the Palaeogene of the outer Moray Firth basin, UK North Sea[J]. Marine and Petroleum Geology, 2000, 17(5): 563−577. doi: 10.1016/S0264-8172(00)00013-1 [43] Andresen K J, Huuse M, Clausen O R. Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea–implications for bottom current activity and fluid migration[J]. Basin Research, 2008, 20(3): 445−466. doi: 10.1111/j.1365-2117.2008.00362.x [44] 蒋恕, 王浩, 郭涛, 等. 渤海湾盆地辽东湾坳陷盆中隆起缓坡带重力流沉积形态及其控制因素[J]. 石油与天然气地质, 2022, 43(4): 823−832.Jiang Shu, Wang Hao, Guo Tao, et al. Geomorphology of gravity flow deposits in the gentle slope zone of intra-basinal high in the Liaodong Bay Depression, Bohai Bay Basin and its controlling factors[J]. Oil & Gas Geology, 2022, 43(4): 823−832. [45] 沈奥, 孙启良, 蔡砥柱, 等. 海底麻坑的特征、分类与成因机制[J]. 地质科技通报, 2023, 42(1): 204−217.Shen Ao, Sun Qiliang, Cai Dizhu, et al. Characteristics, classification and genetic mechanism of pockmarks[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 204−217.