留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用无人机激光雷达估算红树林地上生物量

罗谨璇 田义超 张强 陶进 黄友菊 王京真 张亚丽 黄卓梅 邓静雯 谭雨欣

罗谨璇,田义超,张强,等. 利用无人机激光雷达估算红树林地上生物量[J]. 海洋学报,2023,45(8):108–119 doi: 10.12284/hyxb2023088
引用本文: 罗谨璇,田义超,张强,等. 利用无人机激光雷达估算红树林地上生物量[J]. 海洋学报,2023,45(8):108–119 doi: 10.12284/hyxb2023088
Luo Jinxuan,Tian Yichao,Zhang Qiang, et al. Estimation of aboveground biomass of mangrove forest using UAV-LiDAR[J]. Haiyang Xuebao,2023, 45(8):108–119 doi: 10.12284/hyxb2023088
Citation: Luo Jinxuan,Tian Yichao,Zhang Qiang, et al. Estimation of aboveground biomass of mangrove forest using UAV-LiDAR[J]. Haiyang Xuebao,2023, 45(8):108–119 doi: 10.12284/hyxb2023088

利用无人机激光雷达估算红树林地上生物量

doi: 10.12284/hyxb2023088
基金项目: 国家自然科学基金(42261024);广西高校人文社会科学重点研究基地重大项目(JDZD202214,BHZKY2022);广西林业科技推广示范项目(桂林科研[2022]第4号);广西基地和人才项目(2019AC20088);广西自治区大学生创新创业训练项目(1707402429)。
详细信息
    作者简介:

    罗谨璇(2001-),女,湖北省黄石市人,主要从事资源环境遥感方面的研究。E-mail: 2715920459@qq.com

    通讯作者:

    田义超(1986-),教授,主要从事资源环境遥感与GIS及海岸带生态环境监测的相关研究。E-mail: tianyichao1314@yeah.net

  • 中图分类号: TN958.98;P714+.5

Estimation of aboveground biomass of mangrove forest using UAV-LiDAR

  • 摘要: 红树林作为热带地区碳储量最高的植被类型之一,面积呈现破碎化、减少趋势,地上生物量(AGB)的空间分布及其动态信息对于温室气体通量、碳储量的估算以及政策制定和实施至关重要。但是常用于AGB估算的光学数据或者SAR数据均存在信号饱和现象,且传统估算红树林生物量的算法对数据要求高、估算精度相对较低。针对该问题,本研究使用无人机激光雷达(UAV-LiDAR)数据对比了4种梯度增强决策树算法对于估算入侵红树林物种无瓣海桑AGB的精度,同时探讨了建模过程中的变量重要性。结果表明:(1)XGBR对于评估红树林AGB具有较高的拟合能力,达到R2 = 0.833 8,RMSE = 1.55 Mg/hm2;(2)研究区的无瓣海桑预测AGB的值为73.10~190.00 Mg/hm2,平均值为109.10 Mg/hm2;(3)描述冠层高度特征的激光雷达指标是估计红树林AGB的重要变量。本研究证明了UAV-LiDAR数据与XGBR模型对于估算红树林AGB的可行性,以期为红树林生态系统的蓝碳研究提供数据支撑。
  • 图  1  红树林研究区

    Fig.  1  Mangrove research area

    图  2  划定样方点(a)、测定坐标(b)、测定胸径(c)、记录参数值(d)

    Fig.  2  Delineate quadrat (a), recording coordinates (b), measure the diameter at breast height (c) and recording data (d)

    图  3  技术路线图

    Fig.  3  Technology roadmap

    图  4  研究区域红树林的选定变量重要性顺序

    Fig.  4  Importance order of selected variables of mangroves in study area

    图  5  研究区域红树林的选定变量累计重要性顺序

    Fig.  5  The cumulative importance order of selected variables for mangrove forests in the study area

    图  6  4种不同ML模型(测试阶段)中实测AGB(X轴)与预测AGB(Y轴)的散点图

    Fig.  6  Scatter plots of measured AGB (X axis) and predicted AGB (Y axis) in four different ML models (testing phase)

    图  7  4种不同ML模型(训练阶段)中实测AGB(X轴)与预测AGB(Y轴)的散点图

    Fig.  7  Scatter plots of measured AGB (X axis) and predicted AGB (Y axis) in four different ML models (training phase)

    图  8  XGBR反演红树林地上生物量的空间分布

    Fig.  8  Spatial distribution of aboveground biomass in mangroves retrieved by XGBR

    表  1  林分地上生物量点云特征统计

    Tab.  1  Statistics of point cloud characteristics of aboveground biomass in stands

    变量变量意义计算公式
    elev_p01\int_p01, elev_p05\int_p05, elev_p10\int_p10,…,
    elev_p99\int_p99
    所有点云1%、5%、10%、20%、25%、30%、40%、50%、60%、70%、75%、80%、90%、95%、99%分位数处对应的高度\强度值
    elev_cv样方点云高度的变异系数${ {\text{cv} } = \dfrac{ \text{stddev} }{ \text{mean} } }$
    elev_stddev样方点云高度的标准差${\text{stddev} = \sqrt {\dfrac{1}{n}{ {\displaystyle\sum\limits_{i = 1}^n {({x_i} - \overline x )^2} }} } }$
    elev_iq样方点云百分位数高度的四分位数间距iq = p75− p25
    elev_kurtosis样方点云高度分布的平坦度$ {{\text{kurtosis}} = \dfrac{{\begin{array}{*{20}{c}} {\dfrac{1}{{n - 1}}}\;{\displaystyle\sum\limits_{i = 1}^n {\mathop {(\mathop p\nolimits_i - \bar p)}\nolimits^4 } } \end{array}}}{{\mathop \sigma \nolimits^4 }}} $
    elev_skewness样方点云高度分布的对称程度$ {{\text{skewness}} = \dfrac{{\begin{array}{*{20}{c}} {\dfrac{1}{{n - 1}}}\;{\displaystyle\sum\limits_{i = 1}^n {\mathop {(\mathop p\nolimits_{\text{i}} - \bar p)}\nolimits^3 } } \end{array}}}{{\mathop \sigma \nolimits^3 }}} $
    elev_variance点云高度方差
    elev_max样方点云高度的最大值
    elev_ave样方点云高度的平均值
    elev_mode样方点云高度的众数
    注:cv表示变异系数;stddev表示标准差;iq表示四分位间距;kurtosis表示峰度;skewness表示偏态; p25 为25%高度百分位数; p75 为75%高度百分位数;$ \mathop p\nolimits_i $为每一统计单元内第i个点的高度值;$ \bar p $为每一统计单元内所有点的平均高度;$ \sigma $为统计单元内点云高度分布的标准差。
    下载: 导出CSV

    表  2  实测红树林林木参数

    Tab.  2  Measured mangrove tree parameters

    参数最大最小平均值
    胸径/cm27.2717.2722.48
    树高/m16.749.4013.23
    AGB/(Mg·hm−2)205.9556.75133.99
    下载: 导出CSV
  • [1] Dasgupta S, Islam M S, Huq M, et al. Quantifying the protective capacity of mangroves from storm surges in coastal Bangladesh[J]. PloS One, 2019, 14(3): e0214079. doi: 10.1371/journal.pone.0214079
    [2] 朱耀军, 郭菊兰, 武高洁. 红树林湿地有机碳研究进展[J]. 生态学杂志, 2012, 31(10): 2681−2687. doi: 10.13292/j.1000-4890.2012.0380

    Zhu Yaojun, Guo Julan, Wu Gaojie. Organic carbon in mangrove wetlands: a review[J]. Chinese Journal of Ecology, 2012, 31(10): 2681−2687. doi: 10.13292/j.1000-4890.2012.0380
    [3] 段晓男, 王效科, 逯非, 等. 中国湿地生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2): 463−469. doi: 10.3321/j.issn:1000-0933.2008.02.002

    Duan Xiaonan, Wang Xiaoke, Lu Fei, et al. Carbon sequestration and its potential by wetland ecosystems in China[J]. Acta Ecologica Sinica, 2008, 28(2): 463−469. doi: 10.3321/j.issn:1000-0933.2008.02.002
    [4] Farzanmanesh R, Khoshelham K, Thomas S. Technological opportunities for measuring and monitoring blue carbon initiatives in mangrove ecosystems[J]. Remote Sensing Applications: Society and Environment, 2021, 24: 100612. doi: 10.1016/j.rsase.2021.100612
    [5] Kauffman J B, Heider C, Norfolk J, et al. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic[J]. Ecological Applications A Publication of the Ecological Society of America, 2016, 24(3): 518−527.
    [6] 林天维, 柴清志, 孙子钧, 等. 我国红树林的面积变化及其治理[J]. 海洋开发与管理, 2020, 37(2): 48−52. doi: 10.3969/j.issn.1005-9857.2020.02.008

    Lin Tianwei, Chai Qingzhi, Sun Zijun, et al. The area change and governance of the Mangrove in China[J]. Ocean Development and Management, 2020, 37(2): 48−52. doi: 10.3969/j.issn.1005-9857.2020.02.008
    [7] Nguyen L D, Nguyen C T, Le H S, et al. Mangrove mapping and above-ground biomass change detection using satellite images in coastal areas of Thai Binh Province, Vietnam[J]. Forest and Society, 2019, 3(2): 248−261. doi: 10.24259/fs.v3i2.7326
    [8] Pham L T H, Brabyn L. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128: 86−97. doi: 10.1016/j.isprsjprs.2017.03.013
    [9] Baloloy A B, Blanco A C, Candido C G, et al. Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: rapideye, planetscope and sentinel-2[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, IV-3: 29−36. doi: 10.5194/isprs-annals-IV-3-29-2018
    [10] Zhu Yuanhui, Liu Kai, Liu Lin, et al. Estimating and mapping mangrove biomass dynamic change using WorldView-2 images and digital surface models[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2123−2134. doi: 10.1109/JSTARS.2020.2989500
    [11] Zhu Yuanhui, Liu Kai, Liu Lin, et al. Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images[J]. Remote Sensing, 2015, 7(9): 12192−12214. doi: 10.3390/rs70912192
    [12] Suhaili A, Lawen J. Estimation of plant biomass and carbon stock for a juvenile reforested mangrove stand using high resolution imaging spectrometer[C]//2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Gainesville: IEEE, 2013: 1−5.
    [13] Lucas R, Rebelo L M, Fatoyinbo L, et al. Contribution of L-band SAR to systematic global mangrove monitoring[J]. Marine and Freshwater Research, 2014, 65(7): 589−603. doi: 10.1071/MF13177
    [14] Nesha M K, Hussin Y A, van Leeuwen L M, et al. Modeling and mapping aboveground biomass of the restored mangroves using ALOS-2 PALSAR-2 in East Kalimantan, Indonesia[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 91: 102158. doi: 10.1016/j.jag.2020.102158
    [15] Lucas R M, Mitchell A L, Rosenqvist A, et al. The potential of L-band SAR for quantifying mangrove characteristics and change: case studies from the tropics[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2007, 17(3): 245−264. doi: 10.1002/aqc.833
    [16] 赵天舸, 于瑞宏, 张志磊, 等. 湿地植被地上生物量遥感估算方法研究进展[J]. 生态学杂志, 2016, 35(7): 1936−1946. doi: 10.13292/j.1000-4890.201607.028

    Zhao Tian’ge, Yu Ruihong, Zhang Zhilei, et al. Estimation of wetland vegetation aboveground biomass based on remote sensing data: a review[J]. Chinese Journal of Ecology, 2016, 35(7): 1936−1946. doi: 10.13292/j.1000-4890.201607.028
    [17] Guo Qinghua, Su Yanjun, Hu Tianyu, et al. An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China[J]. International Journal of Remote Sensing, 2017, 38(8/10): 2954−2972.
    [18] 尤号田. 基于机载LiDAR数据森林关键结构参数估测研究[J]. 测绘学报, 2020, 49(12): 1644.

    You Haotian. Research on forest key structural parameters estimation based on airborne LiDAR data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1644.
    [19] Salas C, Ene L, Gregoire T G, et al. Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models[J]. Remote Sensing of Environment, 2010, 114(6): 1277−1285. doi: 10.1016/j.rse.2010.01.020
    [20] Wang Dezhi, Wan Bo, Liu Jing, et al. Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel-2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 85: 101986. doi: 10.1016/j.jag.2019.101986
    [21] Zolkos S G, Goetz S J, Dubayah R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing[J]. Remote Sensing of Environment, 2013, 128: 289−298. doi: 10.1016/j.rse.2012.10.017
    [22] Feliciano E A, Wdowinski S, Potts M D, et al. Estimating mangrove canopy height and above-ground biomass in the Everglades National Park with airborne LiDAR and TanDEM-X data[J]. Remote Sensing, 2017, 9(7): 702. doi: 10.3390/rs9070702
    [23] Wang Dezhi, Wan Bo, Qiu Penghua, et al. Mapping height and aboveground biomass of mangrove forests on Hainan Island using UAV-LiDAR sampling[J]. Remote Sensing, 2019, 11(18): 2156. doi: 10.3390/rs11182156
    [24] Qiu Penghua, Wang Dezhi, Zou Xinqing, et al. Finer resolution estimation and mapping of mangrove biomass using UAV LiDAR and worldview-2 data[J]. Forests, 2019, 10(10): 871. doi: 10.3390/f10100871
    [25] Salum R B, Robinson S A, Rogers K. A Validated and accurate method for quantifying and extrapolating mangrove above-ground biomass using LiDAR data[J]. Remote Sensing, 2021, 13(14): 2763. doi: 10.3390/rs13142763
    [26] Fatoyinbo T, Feliciano E A, Lagomasino D, et al. Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta[J]. Environmental Research Letters, 2018, 13(2): 025012. doi: 10.1088/1748-9326/aa9f03
    [27] Francisca R D S P, Kampel M, Soares M L G, et al. Reducing uncertainty in mapping of mangrove aboveground biomass using airborne discrete return lidar data[J]. Remote Sensing, 2018, 10(4): 637. doi: 10.3390/rs10040637
    [28] Suyadi, Gao J, Lundquist C J, et al. Aboveground carbon stocks in rapidly expanding mangroves in New Zealand: regional assessment and economic valuation of blue carbon[J]. Estuaries and Coasts, 2020, 43(6): 1456−1469. doi: 10.1007/s12237-020-00736-x
    [29] Olagoke A, Proisy C, Féret J B, et al. Extended biomass allometric equations for large mangrove trees from terrestrial LiDAR data[J]. Trees, 2016, 30(3): 935−947. doi: 10.1007/s00468-015-1334-9
    [30] Salum R B, Souza-Filho P W M, Simard M, et al. Improving mangrove above-ground biomass estimates using LiDAR[J]. Estuarine, Coastal and Shelf Science, 2020, 236: 106585. doi: 10.1016/j.ecss.2020.106585
    [31] Pham T D, Yokoya N, Xia Junshi, et al. Comparison of machine learning methods for estimating mangrove above-ground biomass using multiple source remote sensing data in the red river delta biosphere reserve, Vietnam[J]. Remote Sensing, 2020, 12(8): 1334. doi: 10.3390/rs12081334
    [32] Pham T D, Le N N, Ha N T, et al. Estimating mangrove above-ground biomass using extreme gradient boosting decision trees algorithm with fused sentinel-2 and ALOS-2 PALSAR-2 data in can Gio biosphere reserve, Vietnam[J]. Remote Sensing, 2020, 12(5): 777. doi: 10.3390/rs12050777
    [33] He Hongliang, Zhang Wenyu, Zhang Shuai. A novel ensemble method for credit scoring: adaption of different imbalance ratios[J]. Expert Systems with Applications, 2018, 98: 105−117. doi: 10.1016/j.eswa.2018.01.012
    [34] James G, Witten D, Hastie T, et al. An Introduction to Statistical Learning: with Applications in R[M]. New York: Springer, 2013.
    [35] Li Yingchang, Li Mingyang, Li Chao, et al. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms[J]. Scientific Reports, 2020, 10(1): 9952. doi: 10.1038/s41598-020-67024-3
    [36] Li Chunhua, Zhou Lizhi, Xu Wenbin. Estimating aboveground biomass using Sentinel-2 MSI data and ensemble algorithms for grassland in the Shengjin Lake Wetland, China[J]. Remote Sensing, 2021, 13(8): 1595.
    [37] 胡懿凯, 徐耀文, 薛春泉, 等. 广东省无瓣海桑和林地土壤碳储量研究[J]. 华南农业大学学报, 2019, 40(6): 95−103.

    Hu Yikai, Xu Yaowen, Xue Chunquan, et al. Studies on carbon storages of Sonneratia apetala forest vegetation and soil in Guangdong Province[J]. Journal of South China Agricultural University, 2019, 40(6): 95−103.
    [38] Tian Yichao, Zhang Qiang, Huang Hu, et al. Aboveground biomass of typical invasive mangroves and its distribution patterns using UAV-LiDAR data in a subtropical estuary: Maoling River Estuary, Guangxi, China[J]. Ecological Indicators, 2022, 136: 108694. doi: 10.1016/j.ecolind.2022.108694
    [39] 王照利, 王浩伟, 杨佳乐, 等. 基于归一化植被点云的林分平均高及蓄积量反演[J]. 林业资源管理, 2021(6): 37−42. doi: 10.13466/j.cnki.lyzygl.2021.06.007

    Wang Zhaoli, Wang Haowei, Yang Jiale, et al. The inversion of average stand height and stock volume based on normalized vegetation point cloud[J]. Forest Resources Management, 2021(6): 37−42. doi: 10.13466/j.cnki.lyzygl.2021.06.007
    [40] Ali I, Greifeneder F, Stamenkovic J, et al. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data[J]. Remote Sensing, 2015, 7(12): 16398−16421. doi: 10.3390/rs71215841
    [41] Chen Lin, Ren Chunying, Zhang Bai, et al. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery[J]. Forests, 2018, 9(10): 582. doi: 10.3390/f9100582
    [42] Anderson K E, Glenn N F, Spaete L P, et al. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning[J]. Ecological Indicators, 2018, 84: 793−802. doi: 10.1016/j.ecolind.2017.09.034
    [43] Luo Mi, Wang Yifu, Xie Yunhong, et al. Combination of feature selection and catboost for prediction: the first application to the estimation of aboveground biomass[J]. Forests, 2021, 12(2): 216. doi: 10.3390/f12020216
    [44] 谢勇, 项薇, 季孟忠, 等. 基于Xgboost和LightGBM算法预测住房月租金的应用分析[J]. 计算机应用与软件, 2019, 36(9): 151−155, 191.

    Xie Yong, Xiang Wei, Ji Mengzhong, et al. An application and analysis of forecast housing rental based on Xgboost and LightGBM algorithms[J]. Computer Applications and Software, 2019, 36(9): 151−155, 191.
    [45] Tian Yichao, Huang Hu, Zhou Guoqing, et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing[J]. Science of the Total Environment, 2021, 781: 146816. doi: 10.1016/j.scitotenv.2021.146816
    [46] Huang Zhoumei, Tian Yichao, Zhang Qiang, et al. Estimating mangrove above-ground biomass at Maowei sea, Beibu Gulf of China using machine learning algorithm with sentinel-1 and sentinel-2 data[J] Geocarto International, 2022, 37(27): 15778−15805.
    [47] Pandey P C, Anand A, Srivastava P K. Spatial distribution of mangrove forest species and biomass assessment using field inventory and earth observation hyperspectral data[J]. Biodiversity and Conservation, 2019, 28(8): 2143−2162.
    [48] Cohen R. Estimating the above-ground biomass of mangrove forests in Kenya[D]. Edinburgh: The University of Edinburgh, 2014.
    [49] Fatoyinbo T E, Simard M. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM[J]. International Journal of Remote Sensing, 2013, 34(2): 668−681. doi: 10.1080/01431161.2012.712224
    [50] 魏雪梅. 多源数据支持下的森林地上生物量估算方法[J]. 武汉大学学报·信息科学版, 2019, 44(9): 1385−1390. doi: 10.13203/j.whugis20190149

    Wei Xuemei. Estimation of Forest aboveground biomass based on multi-source data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1385−1390. doi: 10.13203/j.whugis20190149
    [51] 段祝庚, 赵旦, 曾源, 等. 基于遥感的区域尺度森林地上生物量估算研究[J]. 武汉大学学报·信息科学版, 2015, 40(10): 1400−1408. doi: 10.13203/j.whugis20140709

    Duan Zhugeng, Zhao Dan, Zeng Yuan, et al. Estimation of the forest aboveground biomass at regional scale based on remote sensing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1400−1408. doi: 10.13203/j.whugis20140709
    [52] Ghosh S M, Behera M D, Paramanik S. Canopy height estimation using sentinel series images through machine learning models in a mangrove forest[J]. Remote Sensing, 2020, 12(9): 1519. doi: 10.3390/rs12091519
    [53] Dang A T N, Nandy S, Srinet R, et al. Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam[J]. Ecological Informatics, 2019, 50: 24−32. doi: 10.1016/j.ecoinf.2018.12.010
    [54] Noi P T, Kappas M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery[J]. Sensors, 2017, 18(1): 18.
    [55] López-Serrano P M, López-Sánchez C A, Álvarez-González J G, et al. A comparison of machine learning techniques applied to landsat-5 TM spectral data for biomass estimation[J]. Canadian Journal of Remote Sensing, 2016, 42(6): 690−705. doi: 10.1080/07038992.2016.1217485
    [56] Huang Guomin, Wu Lifeng, Ma Xin, et al. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions[J]. Journal of Hydrology, 2019, 574: 1029−1041. doi: 10.1016/j.jhydrol.2019.04.085
    [57] Gumus M, Kiran M S. Crude oil price forecasting using XGBoost[C]//2017 International Conference on Computer Science and Engineering (UBMK). Antalya: IEEE, 2017: 1100−1103.
    [58] 彭聪姣, 钱家炜, 郭旭东, 等. 深圳福田红树林植被碳储量和净初级生产力[J]. 应用生态学报, 2016, 27(7): 2059−2065. doi: 10.13287/j.1001-9332.201607.029

    Peng Congjiao, Qian Jiawei, Guo Xudong, et al. Vegetation carbon stocks and net primary productivity of the mangrove forests in Shenzhen, China[J]. Chinese the Journal of Applied Ecology, 2016, 27(7): 2059−2065. doi: 10.13287/j.1001-9332.201607.029
    [59] Wang Gang, Singh M, Wang Jiaqiu, et al. Effects of marine pollution, climate, and tidal range on biomass and sediment organic carbon in Chinese mangrove forests[J]. CATENA, 2021, 202: 105270. doi: 10.1016/j.catena.2021.105270
    [60] Breithaupt J L, Smoak J M, Smith III T J, et al. Organic carbon burial rates in mangrove sediments: strengthening the global budget[J]. Global Biogeochemical Cycles, 2012, 26(3): GB3011.
    [61] Alongi D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 2014, 6: 195−219. doi: 10.1146/annurev-marine-010213-135020
    [62] Binh C T, Phillips M J, Demaine H. Integrated shrimp-mangrove farming systems in the Mekong delta of Vietnam[J]. Aquaculture Research, 1997, 28(8): 599−610. doi: 10.1111/j.1365-2109.1997.tb01080.x
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  511
  • HTML全文浏览量:  195
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-23
  • 修回日期:  2023-03-14
  • 网络出版日期:  2023-08-18
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回