留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冰基浮标数据的2018−2019年北极海冰运动特性时空变化分析

李静悦 雷瑞波 李娜 常晓敏

李静悦,雷瑞波,李娜,等. 基于冰基浮标数据的2018−2019年北极海冰运动特性时空变化分析[J]. 海洋学报,2023,45(8):31–45 doi: 10.12284/hyxb2023086
引用本文: 李静悦,雷瑞波,李娜,等. 基于冰基浮标数据的2018−2019年北极海冰运动特性时空变化分析[J]. 海洋学报,2023,45(8):31–45 doi: 10.12284/hyxb2023086
Li Jingyue,Lei Ruibo,Li Na, et al. Analysis of spatiotemporal changes in Arctic sea ice motion characteristics in 2018−2019 using ice-based buoy data[J]. Haiyang Xuebao,2023, 45(8):31–45 doi: 10.12284/hyxb2023086
Citation: Li Jingyue,Lei Ruibo,Li Na, et al. Analysis of spatiotemporal changes in Arctic sea ice motion characteristics in 2018−2019 using ice-based buoy data[J]. Haiyang Xuebao,2023, 45(8):31–45 doi: 10.12284/hyxb2023086

基于冰基浮标数据的2018−2019年北极海冰运动特性时空变化分析

doi: 10.12284/hyxb2023086
基金项目: 国家自然科学基金(41976219,42106231);上海市优秀学术带头人计划(22XD1403600)。
详细信息
    作者简介:

    李静悦(1997-),女,山西省吕梁市人,研究方向为极地海洋学。E-mail:lijingyue1212@163.com

    通讯作者:

    雷瑞波,研究员,主要从事极地海冰过程研究。E-mail:leiruibo@pric.org.cn

  • 中图分类号: P731.15;P727

Analysis of spatiotemporal changes in Arctic sea ice motion characteristics in 2018−2019 using ice-based buoy data

  • 摘要: 海冰运动是影响北极海冰平流输运和物质平衡空间重新分布的重要因素。本研究基于2018年9月至2019年8月期间北冰洋66个冰基浮标位置记录数据,结合大气再分析数据,计算得到了海冰运动速度、冰速与风速的比值和海冰运动惯性强度,以刻画北极海冰运动学特征参数在一个冰季的时空变化,并讨论了不同区域冰速与风速比与海冰密集度的关联性。海冰漂移速度在波弗特–楚科奇海、东北极中央区和西北极中央区呈秋冬降低春夏升高的季节变化特征。格陵兰海月均海冰漂移速度((0.32 ± 0.06)m/s)最大,其次是弗拉姆海峡((0.17 ± 0.07)m/s)和波弗特–楚科奇海((0.14 ±0.05)m/s),而东北极中央区((0.09 ± 0.02)m/s)和西北极中央区((0.07 ± 0.03)m/s)较低。在月尺度上,冰漂移速度与风速的比值主要受海冰漂移速度支配。弗拉姆海峡和格陵兰海受较强的表层海流影响,冰速与风速比值较大,西北极中央区、东北极中央区和波弗特–楚科奇海的冰速与风速比值随着海冰密集度的增加趋近,并分布在0~0.02之间。所有浮标的月平均惯性运动指数为0.158 ±0.144,秋冬季过渡期间,海冰对风的响应以及海冰运动的惯性信号逐渐减弱,春–夏季随着海冰融化又开始增强,因此上述两个参数都可以作为指示海冰冰场固结程度的重要指标。
  • 图  1  本研究中使用的各种类浮标的观测周期

    三角形点表示在T-ICE 航次布放的浮标;圆点表示2018年9月中国第9次北极科学考察期间布放的浮标;实线表示浮标数据来自IABP数据库;虚线表示浮标数据来自Meereisportal数据库

    Fig.  1  Operational periods of each kind of buoys used in this study

    Triangular scatters buoys deployed during the T-ICE cruise; circular scatters denote buoys deployed during the CHINARE-2018; solid lines represent the data collected from the IABP datebase; dashed lines indicate the data collected from the Meereisportal database

    图  2  研究区域划分

    a. 西北极中央区;b. 波弗特–楚科奇海;c. 东北极中央区;d. 弗拉姆海峡;e. 格陵兰海;黑色圆点、红色圆点、红色三角形、黑色三角形分别表示IABP、Meereisportal、CHINARE和T-ICE浮标最初布放位置

    Fig.  2  Division of the study area

    a. The central western Arctic Ocean; b. the Beaufort-Chukchi Sea; c. the central eastern Arctic Ocean; d. the Fram Strait; e. the Greenland Sea; the black dots, red dots, red triangles, and black triangles show the initial deployment positions of IABP, Meereispotal, CHINARE, and T-ICE buoys, respectively

    图  3  北极地区2018年秋季至2019年夏季的海表面气压距平和风速矢量平均值(黑色箭头)

    红色曲线为浮标运动轨迹

    Fig.  3  Anomaly of SLP and average wind vectors in the Arctic from autumn 2018 to summer 2019 (black arrow)

    Red line denoting the trajectory of buoys

    图  4  各区域浮标位置的平均风速(a)及其距平值(b)

    Fig.  4  Averaged wind speed (a) and its anomaly (b) at buoy positions in each defined region

    图  5  浮标时均速度的空间分布

    星号表示浮标结束观测的位置

    Fig.  5  Spatial distribution of hourly buoy drifting speed

    Stars denoting the ending position of buoys

    图  6  各区域内浮标的月均速度

    Fig.  6  Monthly averaged buoy drifting speed in each defined region

    图  7  2018年9月至2019年8月冰速与风速比的空间分布

    Fig.  7  Spatial distribution of ice-wind speed ratio from September 2018 to August 2019

    图  8  各区域内的月均冰速与风速比

    Fig.  8  Monthly ice-wind speed ratio at buoy positions in each defined region

    图  9  各区域冰基浮标附近海冰密集度的季节变化

    Fig.  9  Seasonal changes of sea ice concentration near the buoys in each region

    图  10  2018年9月至2019年8月归一化冰速经傅里叶变换后对应负位相惯性频率下的月均振幅(IMI)

    Fig.  10  Monthly amplitudes (IMI) after Fourier transformation of normalized ice speed at the negative-phase inertial frequency from September 2018 to August 2019

    图  11  2018年9月至2019年8月归一化冰速经傅里叶变换后对应正位相半日频率下的月均振幅(PHA)

    Fig.  11  Monthly amplitudes (PHA) after Fourier transformation of normalized ice speed at the positive-phase semidiurnal frequency from September 2018 to August 2019

    图  12  不同海冰密集度情况下冰速与风速比值的分布

    Fig.  12  Distribution of ice speed-wind speed ratio under different sea ice concentration

    表  1  2018–2019年北极冰基浮标基本信息

    Tab.  1  Arctic ice-based buoy information in 2018–2019

    浮标类型来源采样时间间隔/h浮标个数
    Snow and Ice Mass Balance Array (SIMBA)CHINARE/AWI1/212
    Snow Buoy (SB)AWI-USIABP113
    Ice Surface Velocity Program (ISVP)USIABP/AARI18
    Ice Tethered Profiler (ITP)WHOI15
    Ice Mass Balance Buoy (IMB)BAS19
    No Drogue Ice Tracker (ICEBA)USIABP-AOML13
    Upper Temperature of the Polar Oceans (UTPO)PSC-UPTEMPO1/61
    Barometer GPS Iridium SVP (BD2GI)AOML11
    Air-Deployable Expendable Ice Buoy (AXIB)USIABP13
    Thermistor Buoy (TB)AWI/FMI27
    Ice Beacon (ICEB)AWI-USIABP12
    Compact Air Launched Ice Beacon (CALIB)AWI-USIABP12
    下载: 导出CSV

    表  2  各区域浮标周边海冰密集度不同区间所占的比例

    Tab.  2  Proportion of different sea ice concentration intervals in each defined region

    比例0~15%15%~30%30%~45%45%~60%60%~75%75%~90%90%~100%
    西北极中央区0000.08%0.42%3.88%95.62%
    波弗特−楚科奇海7.69%0.57%0.70%1.57%2.76%6.23%80.48%
    东北极中央区0.02%0.02%0.05%0.25%0.61%1.85%97.20%
    弗拉姆海峡00.45%0.30%0.30%0.60%5.37%93.00%
    格陵兰海41.98%1.49%3.54%4.10%4.85%7.28%36.75%
    下载: 导出CSV
  • [1] Kwok R, Spreen G, Pang S. Arctic sea ice circulation and drift speed: Decadal trends and ocean currents[J]. Journal of Geophysical Research: Oceans, 2013, 118(5): 2408−2425. doi: 10.1002/jgrc.20191
    [2] Cohen J, Screen J A, Furtado J C, et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014, 7(9): 627−637. doi: 10.1038/ngeo2234
    [3] Bi Haibo, Yang Qinghua, Liang Xi, et al. Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean[J]. The Cryosphere, 2019, 13(5): 1423−1439. doi: 10.5194/tc-13-1423-2019
    [4] Rudels B. Arctic Ocean circulation, processes and water masses: a description of observations and ideas with focus on the period prior to the international polar year 2007–2009[J]. Progress in Oceanography, 2015, 132: 22−67. doi: 10.1016/j.pocean.2013.11.006
    [5] Li Mengmeng, Ke Changqing, Shen Xiaoyi, et al. Investigation of the Arctic Sea ice volume from 2002 to 2018 using multi-source data[J]. International Journal of Climatology, 2021, 41(4): 2509−2527. doi: 10.1002/joc.6972
    [6] Onarheim I H, Eldevik T, Smedsrud L H, et al. Seasonal and regional manifestation of Arctic sea ice loss[J]. Journal of Climate, 2018, 31(12): 4917−4932. doi: 10.1175/JCLI-D-17-0427.1
    [7] Kumar A, Yadav J, Mohan R. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications[J]. Science of the Total Environment, 2021, 753: 142046. doi: 10.1016/j.scitotenv.2020.142046
    [8] Vihma T, Launiainen J, Uotila J. Weddell Sea ice drift: Kinematics and wind forcing[J]. Journal of Geophysical Research: Oceans, 1996, 101(C8): 18279−18296. doi: 10.1029/96JC01441
    [9] Wassermann S, Schmitt C, Kottmeier C, et al. Coincident vortices in Antarctic wind fields and sea ice motion[J]. Geophysical Research Letters, 2006, 33(15): L15810. doi: 10.1029/2006GL026005
    [10] Nakayama Y, Ohshima K I, Fukamachi Y. Enhancement of sea ice drift due to the dynamical interaction between sea ice and a coastal ocean[J]. Journal of Physical Oceanography, 2012, 42(1): 179−192. doi: 10.1175/JPO-D-11-018.1
    [11] Leppäranta M. The Drift of Sea Ice[M]. 2nd ed. Berlin: Springer, 2011.
    [12] Lund B, Graber H C, Persson P O G, et al. Arctic sea ice drift measured by shipboard marine radar[J]. Journal of Geophysical Research: Oceans, 2018, 123(6): 4298−4321. doi: 10.1029/2018JC013769
    [13] Olason E, Notz D. Drivers of variability in Arctic sea-ice drift speed[J]. Journal of Geophysical Research: Oceans, 2014, 119(9): 5755−5775. doi: 10.1002/2014JC009897
    [14] Gimbert F, Marsan D, Weiss J, et al. Sea ice inertial oscillations in the Arctic Basin[J]. The Cryosphere, 2012, 6(5): 1187−1201. doi: 10.5194/tc-6-1187-2012
    [15] Lammert A, Brümmer B, Kaleschke L. Observation of cyclone-induced inertial sea-ice oscillation in Fram Strait[J]. Geophysical Research Letters, 2009, 36(10): L10503. doi: 10.1029/2009GL037197
    [16] Zhang Jinlun, Lindsay R, Schweiger A, et al. Recent changes in the dynamic properties of declining Arctic sea ice: a model study[J]. Geophysical Research Letters, 2012, 39(20): L20503.
    [17] Proshutinsky A Y, Johnson M. Two regimes of the Arctic’s circulation from ocean models with ice and contaminants[J]. Marine Pollution Bulletin, 2001, 43(1/6): 61−70.
    [18] 曹勇, 赵进平. 2011−2014年中国北极物理海洋学的研究进展[J]. 海洋学报, 2015, 37(11): 1−10.

    Cao Yong, Zhao Jinping. Progress in Arctic physical oceanography in China during 2011−2014[J]. Haiyang Xuebao, 2015, 37(11): 1−10.
    [19] Lei Ruibo, Gui Dawei, Hutchings J K, et al. Backward and forward drift trajectories of sea ice in the northwestern Arctic Ocean in response to changing atmospheric circulation[J]. International Journal of Climatology, 2019, 39(11): 4372−4391. doi: 10.1002/joc.6080
    [20] Krumpen T, Birrien F, Kauker F, et al. The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf[J]. The Cryosphere, 2020, 14(7): 2173−2187. doi: 10.5194/tc-14-2173-2020
    [21] Spreen G, Kaleschke L, Heygster G. Sea ice remote sensing using AMSR-E 89-GHz channels[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S03.
    [22] Chang X, Ye L, Zuo G, et al. Characteristics of sea ice kinematics from the marginal ice zone to the packed ice zone observed by buoys deployed during the 9th Chinese Arctic Expedition[J]. Acta Oceanologica Sinica, 2022, 41(7): 113−127.
    [23] Hersbach H, Bell B, Berrisford P, et al. Global reanalysis: goodbye ERA-Interim, hello ERA5[J]. ECMWF Newsletter, 2019, 159: 17−24.
    [24] Lei Ruibo, Hoppmann M, Cheng B, et al. Seasonal changes in sea ice kinematics and deformation in the Pacific sector of the Arctic Ocean in 2018/19[J]. The Cryosphere, 2021, 15(3): 1321−1341. doi: 10.5194/tc-15-1321-2021
    [25] Womack A, Vichi M, Alberello A, et al. Atmospheric drivers of a winter-to-spring Lagrangian sea-ice drift in the eastern Antarctic marginal ice zone[J]. Journal of Glaciology, 2022, 68(271): 999−1013.
    [26] Li Zhe, Ding Qinghua, Steele M, et al. Recent upper Arctic Ocean warming expedited by summertime atmospheric processes[J]. Nature Communications, 2022, 13(1): 362. doi: 10.1038/s41467-022-28047-8
    [27] Spreen G, Kwok R, Menemenlis D. Trends in Arctic sea ice drift and role of wind forcing: 1992–2009[J]. Geophysical Research Letters, 2011, 38(19): L19501.
    [28] Gui Dawei, Pang Xiaoping, Lei Ruibo, et al. Changes in sea ice kinematics in the Arctic outflow region and their associations with Arctic Northeast Passage accessibility[J]. Acta Oceanologica Sinica, 2019, 38(8): 101−110. doi: 10.1007/s13131-019-1451-1
    [29] Li Linghan, Miller A J, McClean J L, et al. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: anomalies from the mean seasonal cycle[J]. Ocean Dynamics, 2014, 64(12): 1693−1717. doi: 10.1007/s10236-014-0769-7
    [30] Lei Ruibo, Gui Dawei, Hutchings J K, et al. Annual cycles of sea ice motion and deformation derived from buoy measurements in the western Arctic Ocean over two ice seasons[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2019JC015310.
    [31] Kwok R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018)[J]. Environmental Research Letters, 2018, 13(10): 105005. doi: 10.1088/1748-9326/aae3ec
    [32] Rampal P, Weiss J, Marsan D. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007[J]. Journal of Geophysical Research: Oceans, 2009, 114(C5): C05013.
    [33] Vihma T, Tisler P, Uotila P. Atmospheric forcing on the drift of Arctic sea ice in 1989–2009[J]. Geophysical Research Letters, 2012, 39(2): L02501.
    [34] Docquier D, Massonnet F, Barthélemy A, et al. Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6[J]. The Cryosphere, 2017, 11(6): 2829−2846. doi: 10.5194/tc-11-2829-2017
    [35] Haller M, Brümmer B, Müller G. Atmosphere–ice forcing in the transpolar drift stream: results from the DAMOCLES ice-buoy campaigns 2007–2009[J]. The Cryosphere, 2014, 8(1): 275−288. doi: 10.5194/tc-8-275-2014
    [36] Kwok R, Rothrock D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008[J]. Geophysical Research Letters, 2009, 36(15): L15501.
    [37] Martin T, Steele M, Zhang J L. Seasonality and long-term trend of Arctic Ocean surface stress in a model[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 1723−1738. doi: 10.1002/2013JC009425
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  102
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 修回日期:  2023-03-13
  • 网络出版日期:  2023-08-17
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回