Sources and transport of clay mineral in surface sediments of the sea of northeastern Seychelles Islands
-
摘要: 本文基于塞舌尔群岛东北部海域34个表层沉积物样品的黏土矿物测试结果分析其组成特征、分布规律和物质来源。研究区表层沉积物中黏土矿物平均相对含量从高到低依次为伊利石(35%)、坡缕石(20%)、蒙皂石(20%)、高岭石(16%)、绿泥石(10%)。根据沉积物黏土矿物相对含量和空间分布规律,可将研究区分为2个亚区(I区、II区)。I区覆盖研究区北部大部区域,物质来源主要为阿拉伯半岛、印度半岛西南部以及索马里海岸沙漠的风尘物质;II区位于研究区南部的塞舌尔群岛以东,主要接收塞舌尔高原风化物质。综合分析研究区细颗粒物质来源、空间分布规律及区域动力环境特征,南亚夏季风搬运阿拉伯半岛、印度西部及索马里海岸沙漠风尘物质向南输运是影响I区黏土矿物组成的主要因素;南赤道逆流驱动塞舌尔高原富高岭石、绿泥石的细粒风化物质向东扩散,控制了II区黏土矿物组成特征和空间分布规律。Abstract: The relative contents of clay minerals in 34 surface sediment samples were analyzed by X-ray diffraction. The results showed that the content of clay minerals in the surface sediments was illite (35%), palygorskite (20%), smectite (20%), kaolinite (16%) and chlorite (10%). Q-cluster analysis using SPSS software shows that clay minerals can be divided into two provinces (Province I and Province II). Province I covers most of the northern area, and the source is mainly the dust influx from the deserts of Arabian Peninsula, western India and Somali coast; Province II is located at the southwest of the study area, mainly receiving the weathering matters from the granite bedrock of Seychelles Plateau. A comprehensive analysis of the sources of fine particulate matter in the study area and the regional dynamical environment reveals that the southward transport of the aeolian dust from the Arabian Peninsula, western India and the Somali coastal deserts by the South Asian summer monsoon controls the composition of clay minerals in the Province I. The south equatorial low latitude ocean current system promotes the meridional diffusion of fine particles in the study area. The southern Equatorial Counter Current drives the eastward diffusion of kaolinite and chlorite-rich fine materials from Seychelles Plateau.
-
Key words:
- sediment /
- clay minerals /
- provenance /
- monsoon /
- ocean currents /
- western Indian Ocean
-
图 1 研究区位置、南亚季风路径及表层环流模式图
研究区站位包括DSDP 234~236, 240~241;SK 114, GC03, GC04[34];ODP 720A[35];塔尔沙漠[13]。红色曲线代表夏季西印度洋表层环流,蓝色曲线代表冬季西印度洋表层环流。SMC:夏季风环流;NMC:冬季风环流;NEC:北赤道流;SC:索马里海流;EACC:东非沿岸流;SECC:南赤道逆流;SEC:南赤道流。红色箭头代表西南季风风向,蓝色箭头代表东北季风风向;黄色箭头代表亚洲、非洲风尘物质输送路径周边重要尘源区,依据文献[10]改绘;西印度洋表层环流依据文献[31]改绘
Fig. 1 Location of the study area, southern Asian moonsoon and surface Current pattern of map
Sampling stations includes DSDP 234−236, 240−241;SK 114, GC03, GC04[34]; ODP 720A[35]; Thar Desert[13]. Red curves indicate the surface circulation during southwest monsoon. Blue curves indicate the surface circulation during northeast monsoo. SMC: Summer Wind Circulation; NMC: Winter Wind Circulation; NEC: North Equatorial Current; SC: Somali Current; EACC: East African Coastal Current; SECC: South Equatorial Counter Current; SEC: South Equatorial Current. Red arrow indicates the southwest monsoon winds. Blue arrow indicates the northeast monsoon winds. Yellow arrow indicates the transport path of aeolian materials in Asia and Africa. Some important dust source regions modified from reference [10]. The western Indian Ocean surface circulation modified from reference [31]
表 1 研究区表层沉积物黏土矿物含量统计表
Tab. 1 Statistical table of clay minerals content in surface sediments of the study area
沉积物 I区(n = 24) II区(n = 10) 平均值/% 最高值/% 最低值/% 平均值/% 最高值/% 最低值/% 伊利石 37 45 29 30 39 24 坡缕石 21 29 15 19 23 14 蒙皂石 18 26 9 25 34 21 高岭石 15 21 11 18 22 14 绿泥石 10 17 3 9 13 5 表 2 研究区周边大陆及钻孔顶部沉积物黏土矿物相对含量
Tab. 2 Ralative content of clay minerals in the adjacent regions and the top of holes of study area
研究地点 站位 纬度 经度 相对含量 参考文献 蒙皂石/% 坡缕石/% 伊利石/% 绿泥石/% 高岭石/% 印度扇西缘 720A 16.130 0°N 60.740 0°E 4 0 69 14 13 Govil和 Naidu[35] 索马里海盆 234 4.482 7°N 51.224 7°E 30 29 19 0 8 深海钻探计划(DSDP) 235 3.234 3°N 52.694 0°E 41 28 14 0 11 236 1.677 0°S 57.647 5°E 37 0 22 2 12 240 3.487 3°S 50.053 7°E 55 16 10 0 14 241 2.370 7°S 44.679 5°E 53 18 13 0 11 印度河三角洲 盖蒂本德尔 23.910 0°N 66.210 0°E 49 0 41 8 1 Alizai等[42] 印度西部塔尔沙漠 焦特布尔 26.200 0°N 73.100 0°E 10 0 62 11 17 Goldberg和Griffin[13] 比卡内尔 28.000 0°N 73.300 0°E 24 0 47 23 7 阿拉伯半岛沙漠 沙特阿拉伯沙漠 − − 40 20 5 0 35 Ganor等[50] 大气尘埃颗粒 − − 16 37 28 0 19 − − 15 34 21 14 17 阿拉伯半岛与印度西部沙漠大气尘埃混合 − − 16 13 44 17 10 Suresh等[5] 注:“−”表示文献未提到数据。 -
[1] Purnachandra Rao V, Ramalingeswara Rao B. Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India[J]. Continental Shelf Research, 1995, 15(14): 1757−1771. doi: 10.1016/0278-4343(94)00092-2 [2] Windom H. Lithogenous material in marine sediments[M]//Riley J P, Chester R. Chemical Oceanography. London: Academic Press, 1976. [3] Zöllmer V, Irion G. Clay mineral and heavy metal distributions in the northeastern North Sea[J]. Marine Geology, 1993, 111(3/4): 223−230. doi: 10.1016/0025-3227(93)90132-F [4] Thiry M, Pletsch T. Palygorskite clays in marine sediments: records of extreme climate[J]. Developments in Clay Science, 2011, 3: 101−124. [5] Suresh K, Kumar A, Ramaswamy V, et al. Seasonal variability in aeolian dust deposition fluxes and their mineralogical composition over the northeastern Arabian Sea[J]. International Journal of Environmental Science and Technology, 2022, 19(8): 7701−7714. doi: 10.1007/s13762-021-03503-y [6] Kessarkar P M, Rao V P, Ahmad S M, et al. Clay minerals and Sr–Nd isotopes of the sediments along the western margin of India and their implication for sediment provenance[J]. Marine Geology, 2003, 202(1/2): 55−69. doi: 10.1016/S0025-3227(03)00240-8 [7] Lindhorst S, Betzler C, Kroon D. Wind variability over the northern Indian Ocean during the past 4 million years—Insights from coarse aeolian dust (IODP exp. 359, site U1467, Maldives)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 536: 109371. doi: 10.1016/j.palaeo.2019.109371 [8] Kolla V, Henderson L, Biscaye P E. Clay mineralogy and sedimentation in the western Indian ocean[J]. Deep−Sea Research and Oceanographic Abstracts, 1976, 23(10): 949−961. doi: 10.1016/0011-7471(76)90825-1 [9] Léon J F, Legrand M. Mineral dust sources in the surroundings of the north Indian Ocean[J]. Geophysical Research Letters, 2003, 30(6): 1309. [10] Singh N D, Singh S K. Distribution and cycling of dissolved aluminium in the Arabian Sea and the western Equatorial Indian Ocean[J]. Marine Chemistry, 2022, 243: 104122. doi: 10.1016/j.marchem.2022.104122 [11] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5718): 67−71. doi: 10.1126/science.1105959 [12] Kolla V, Kostecki J A, Robinson F, et al. Distributions and origins of clay minerals and quartz in surface sediments of the Arabian Sea[J]. Journal of Sedimentary Research, 1981, 51(2): 563−569. [13] Goldberg E D, Griffin J J. The sediments of the northern Indian Ocean[J]. Deep−Sea Research and Oceanographic Abstracts, 1970, 17(3): 513−537. doi: 10.1016/0011-7471(70)90065-3 [14] Thamban M, Purnachandra Rao V, Schneider R R. Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India[J]. Marine Geology, 2002, 186(3/4): 527−539. doi: 10.1016/S0025-3227(02)00268-2 [15] Pandarinath K. Clay minerals in SW Indian continental shelf sediment cores as indicators of provenance and palaeomonsoonal conditions: a statistical approach[J]. International Geology Review, 2009, 51(2): 145−165. doi: 10.1080/00206810802622112 [16] Haq B U, Milliman J D. Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan[M]. New York: Van Nostrand Reinhold Company, 1984. [17] Limmer D R, Köhler C M, Hillier S, et al. Chemical weathering and provenance evolution of Holocene-Recent sediments from the western Indus Shelf, northern Arabian Sea inferred from physical and mineralogical properties[J]. Marine Geology, 2012, 10(326/328):101−115. [18] Baskaran M, Sarin M M, Somayajulu B L K. Composition of mineral fractions of the Narbada and Tapti estuarine particles and the adjacent Arabian Sea sediments off western India[J]. Chemical Geology, 1984, 45(1/2): 33−51. doi: 10.1016/0009-2541(84)90114-1 [19] Das S S, Rai A K, Akaram V, et al. Paleoenvironmental significance of clay mineral assemblages in the southeastern Arabian Sea during last 30 kyr[J]. Journal of Earth System Science, 2013, 122(1): 173−185. doi: 10.1007/s12040-012-0251-1 [20] Fisk M R, Duncan R A, Baxter A N, et al. Reunion hotspot magma chemistry over the past 65 m. y. : Results from leg 115 of the ocean drilling program[J]. Geology, 1989, 17(10): 934−937. doi: 10.1130/0091-7613(1989)017<0934:RHMCOT>2.3.CO;2 [21] Yu Z, Li H, Li M, et al. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the Northwest Indian Ocean[J]. Journal of Marine Systems, 2018, 180: 173−181. doi: 10.1016/j.jmarsys.2016.11.013 [22] Lim D, Kim H, Kim J, et al. Mercury proxy for hydrothermal and submarine volcanic activities in the sediment cores of Central Indian Ridge[J]. Marine Pollution Bulletin, 2020, 159: 111513. doi: 10.1016/j.marpolbul.2020.111513 [23] Clemens S, Prell W, Murray D, et al. Forcing mechanisms of the Indian Ocean monsoon[J]. Nature, 1991, 353(6346): 720−725. doi: 10.1038/353720a0 [24] Camoin G F, Montaggioni L F, Braithwaite C J R. Late glacial to post glacial sea levels in the western Indian Ocean[J]. Marine Geology, 2004, 206(1/4): 119−146. doi: 10.1016/j.margeo.2004.02.003 [25] Duncan R A, Backman J, Peterson L, et al. Reunion hotspot activitity through tertiary time: initial results from the ocean drilling program, leg 115[J]. Journal of Volcanology and Geothermal Research, 1989, 36(1/3): 193−198. [26] Naidu P D, Malmgren B A. Quaternary carbonate record from the equatorial Indian Ocean and its relationship with productivity changes[J]. Marine Geology, 1999, 161(1): 49−62. doi: 10.1016/S0025-3227(99)00055-9 [27] Fieux M. Indian Ocean Equatorial Currents[M]//Steele J H. Encyclopedia of Ocean Sciences. 2nd ed. Oxford: Academic Press, 2001: 362−373. [28] Fieux M, Reverdin G. Current systems in the Indian Ocean[M]//Steele J H. Encyclopedia of Ocean Sciences. 2nd ed. Oxford: Academic Press, 2001: 728−734. [29] Castillo-Trujillo A C, Arzeno-Soltero I B, Giddings S N, et al. Observations and modeling of ocean circulation in the seychelles Plateau region[J]. Journal of Geophysical Research: Oceans, 2021, 126(2): e2020JC016593. [30] L’Hégaret P, Beal L M, Elipot S, et al. Shallow cross-equatorial gyres of the Indian Ocean driven by seasonally reversing monsoon winds[J]. Journal of Geophysical Research: Oceans, 2018, 123(12): 8902−8920. doi: 10.1029/2018JC014553 [31] Schott F A, McCreary J P. The monsoon circulation of the Indian Ocean[J]. Progress in Oceanography, 2001, 51(1): 1−123. doi: 10.1016/S0079-6611(01)00083-0 [32] Nyadjro E S, Jensen T G, Richman J G, et al. On the relationship between wind, SST, and the thermocline in the Seychelles-Chagos Thermocline Ridge[J]. IEEE Geoscience & Remote Sensing Letters, 2017, PP(12): 1−5. [33] Wyrtki K. An equatorial jet in the Indian Ocean[J]. Science, 1973, 181(4096): 262−264. doi: 10.1126/science.181.4096.262 [34] Valsangkar A B, Borole D, Shejwalkar A S, et al. Potential diagenetic and detrital sources for calcareous sediments from the Carlsberg Ridge, Indian Ocean[J]. Current Science, 2009, 96(8): 1090−1099. [35] Govil P, Naidu P D. Late Quaternary changes in depositional processes along the western margin of the Indus Fan[J]. Geo-Marine Letters, 2008, 28(1): 1−6. doi: 10.1007/s00367-007-0083-1 [36] Dean W E, Leinen M, Stow D A V. Classification of deep-sea, fine-grained sediments[J]. Journal of Sedimentary Petrology, 1985, 55(2): 250−256. [37] Ehrmann W, Schmiedl G. Nature and dynamics of North African humid and dry periods during the last 200 000 years documented in the clay fraction of Eastern Mediterranean deep-sea sediments[J]. Quaternary Science Reviews, 2021, 260: 106925. doi: 10.1016/j.quascirev.2021.106925 [38] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803−832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 [39] Weaver C E, Beck K C. Miocene of the S. E. United States: a model for chemical sedimentation in a peri-marine environment[J]. Sedimentary Geology, 1977, 17(1/2): 9−21. [40] Esquevin J. Influence de la composition chimique des illites sur leur cristallinite[J]. Bulletin-Centres de Recherches Exploration-Production Elf-Aquitaine, 1969, 3(1): 147−153. [41] McMurtry G M. Deep-sea sediment: authigenic deposits[M]//Cochran J K, Bokuniewicz H J, Yager P L. Encyclopedia of Ocean Sciences. 3rd ed. London: Academic Press, 2019: 121−132. [42] Alizai A, Hillier S, Clift P D, et al. Clay mineral variations in Holocene terrestrial sediments from the Indus Basin[J]. Quaternary Research, 2012, 77(3): 368−381. doi: 10.1016/j.yqres.2012.01.008 [43] Sirocko F, Lange H. Clay-mineral accumulation rates in the Arabian Sea during the late Quaternary[J]. Marine Geology, 1991, 97(1/2): 105−119. doi: 10.1016/0025-3227(91)90021-U [44] Stein R. Clay minerals[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of Marine Geosciences. Dordrecht: Springer Netherlands, 2015: 1−8. [45] Tindale N W, Pease P P. Aerosols over the Arabian Sea: atmospheric transport pathways and concentrations of dust and sea salt[J]. Deep−Sea Research Part II: Topical Studies in Oceanography, 1999, 46(8): 1577−1595. [46] Tucker R D, Ashwal L D, Torsvik T H. U–Pb geochronology of Seychelles granitoids: a Neoproterozoic continental arc fragment[J]. Earth and Planetary Science Letters, 2001, 187(1−2): 27−38. doi: 10.1016/S0012-821X(01)00282-5 [47] 马在平, 姜在兴, 钱峥. 我国热带亚热带部分地区花岗岩和片麻岩中黑云母风化研究[J]. 矿物岩石, 1996, 16(2): 17−24. doi: 10.19719/j.cnki.1001-6872.1996.02.003Ma Zaiping, Jiang Zaixing, Qian Zheng. Weathering of Biotite in some weathered granite and gneiss from some subtropical and tropical area of China[J]. Journal of Mineralogy and Petrology, 1996, 16(2): 17−24. doi: 10.19719/j.cnki.1001-6872.1996.02.003 [48] Debrabant P, Fagel N, Chamley H, et al. Neogene to Quaternary clay mineral fluxes in the Central Indian Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 103(3/4): 117−131. doi: 10.1016/0031-0182(93)90138-9 [49] Liu Z, Wang H, Hantoro W S, et al. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra)[J]. Chemical Geology, 2012, 291: 1−12. doi: 10.1016/j.chemgeo.2011.11.015 [50] Ganor E. The composition of clay minerals transported to Israel as indicators of Saharan dust emission[J]. Atmospheric Environment. Part A. General Topics, 1991, 25(12): 2657−2664. doi: 10.1016/0960-1686(91)90195-D