留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塞舌尔群岛东北部海域现代沉积物黏土矿物特征及来源分析

武佳星 刘升发 曹鹏 张辉 黄牧 刘焱光 石学法

武佳星,刘升发,曹鹏,等. 塞舌尔群岛东北部海域现代沉积物黏土矿物特征及来源分析[J]. 海洋学报,2023,45(6):160–170 doi: 10.12284/hyxb2023085
引用本文: 武佳星,刘升发,曹鹏,等. 塞舌尔群岛东北部海域现代沉积物黏土矿物特征及来源分析[J]. 海洋学报,2023,45(6):160–170 doi: 10.12284/hyxb2023085
Wu Jiaxing,Liu Shengfa,Cao Peng, et al. Sources and transport of clay mineral in surface sediments of the sea of northeastern Seychelles Islands[J]. Haiyang Xuebao,2023, 45(6):160–170 doi: 10.12284/hyxb2023085
Citation: Wu Jiaxing,Liu Shengfa,Cao Peng, et al. Sources and transport of clay mineral in surface sediments of the sea of northeastern Seychelles Islands[J]. Haiyang Xuebao,2023, 45(6):160–170 doi: 10.12284/hyxb2023085

塞舌尔群岛东北部海域现代沉积物黏土矿物特征及来源分析

doi: 10.12284/hyxb2023085
基金项目: 全球变化与海气相互作用专项(GASI-01-WIND-CJ01)。
详细信息
    作者简介:

    武佳星(1998-),女,山西省太原市人,主要从事海洋沉积学研究。E-mail:wujiaxing@fio.org.cn

    通讯作者:

    刘升发,男,研究员,研究方向为海洋沉积学。E-mail:liushengfa@fio.org.cn

  • 中图分类号: P736.21

Sources and transport of clay mineral in surface sediments of the sea of northeastern Seychelles Islands

  • 摘要: 本文基于塞舌尔群岛东北部海域34个表层沉积物样品的黏土矿物测试结果分析其组成特征、分布规律和物质来源。研究区表层沉积物中黏土矿物平均相对含量从高到低依次为伊利石(35%)、坡缕石(20%)、蒙皂石(20%)、高岭石(16%)、绿泥石(10%)。根据沉积物黏土矿物相对含量和空间分布规律,可将研究区分为2个亚区(I区、II区)。I区覆盖研究区北部大部区域,物质来源主要为阿拉伯半岛、印度半岛西南部以及索马里海岸沙漠的风尘物质;II区位于研究区南部的塞舌尔群岛以东,主要接收塞舌尔高原风化物质。综合分析研究区细颗粒物质来源、空间分布规律及区域动力环境特征,南亚夏季风搬运阿拉伯半岛、印度西部及索马里海岸沙漠风尘物质向南输运是影响I区黏土矿物组成的主要因素;南赤道逆流驱动塞舌尔高原富高岭石、绿泥石的细粒风化物质向东扩散,控制了II区黏土矿物组成特征和空间分布规律。
  • 图  1  研究区位置、南亚季风路径及表层环流模式图

    研究区站位包括DSDP 234~236, 240~241;SK 114, GC03, GC04[34];ODP 720A[35];塔尔沙漠[13]。红色曲线代表夏季西印度洋表层环流,蓝色曲线代表冬季西印度洋表层环流。SMC:夏季风环流;NMC:冬季风环流;NEC:北赤道流;SC:索马里海流;EACC:东非沿岸流;SECC:南赤道逆流;SEC:南赤道流。红色箭头代表西南季风风向,蓝色箭头代表东北季风风向;黄色箭头代表亚洲、非洲风尘物质输送路径周边重要尘源区,依据文献[10]改绘;西印度洋表层环流依据文献[31]改绘

    Fig.  1  Location of the study area, southern Asian moonsoon and surface Current pattern of map

    Sampling stations includes DSDP 234−236, 240−241;SK 114, GC03, GC04[34]; ODP 720A[35]; Thar Desert[13]. Red curves indicate the surface circulation during southwest monsoon. Blue curves indicate the surface circulation during northeast monsoo. SMC: Summer Wind Circulation; NMC: Winter Wind Circulation; NEC: North Equatorial Current; SC: Somali Current; EACC: East African Coastal Current; SECC: South Equatorial Counter Current; SEC: South Equatorial Current. Red arrow indicates the southwest monsoon winds. Blue arrow indicates the northeast monsoon winds. Yellow arrow indicates the transport path of aeolian materials in Asia and Africa. Some important dust source regions modified from reference [10]. The western Indian Ocean surface circulation modified from reference [31]

    图  2  研究区表层沉积物分布特征及水深分布

    a. 黏土;b. 硅质生物;c. 钙质生物。灰色线为等深线

    Fig.  2  Distribution of surface sediments types and water depth in the study area

    a. Clay; b. siliceous ooze; c. calcareous ooze. The gray lines indicate the is obath lines

    图  3  表层沉积物黏土矿物含量(a−e)、黏土矿物指标(f−h)分布特征及研究区水深分布(灰色线为等深线)

    Fig.  3  Distribution characteristic of clay mineral content (a−e) and index (f−h) in surface sediments and wate depth distribution in the study area (the gray lines indicate the isbath line)

    图  4  研究区表层黏土矿物分区

    灰色为等深线

    Fig.  4  Clay mineral provinces in the study area

    The gray lines indieate the isobath lines

    图  5  蒙皂石−(伊利石+绿泥石)−坡缕石三角端元图

    Fig.  5  Triangular diagram with smectite, playgorskite and illite+chlorite as end members

    表  1  研究区表层沉积物黏土矿物含量统计表

    Tab.  1  Statistical table of clay minerals content in surface sediments of the study area

    沉积物I区(n = 24)II区(n = 10)
    平均值/%最高值/%最低值/%平均值/%最高值/%最低值/%
    伊利石374529303924
    坡缕石212915192314
    蒙皂石18269253421
    高岭石152111182214
    绿泥石101739135
    下载: 导出CSV

    表  2  研究区周边大陆及钻孔顶部沉积物黏土矿物相对含量

    Tab.  2  Ralative content of clay minerals in the adjacent regions and the top of holes of study area

    研究地点站位纬度 经度 相对含量 参考文献
    蒙皂石/%坡缕石/%伊利石/%绿泥石/%高岭石/%
    印度扇西缘720A16.130 0°N60.740 0°E40691413Govil和 Naidu[35]
    索马里海盆2344.482 7°N51.224 7°E30291908深海钻探计划(DSDP)
    2353.234 3°N52.694 0°E412814011
    236 1.677 0°S57.647 5°E37022212
    240 3.487 3°S50.053 7°E551610014
    241 2.370 7°S44.679 5°E531813011
    印度河三角洲盖蒂本德尔 23.910 0°N66.210 0°E4904181Alizai等[42]
    印度西部塔尔沙漠焦特布尔26.200 0°N73.100 0°E100621117Goldberg和Griffin[13]
    比卡内尔28.000 0°N73.300 0°E24047237
    阿拉伯半岛沙漠沙特阿拉伯沙漠40205035Ganor等[50]
    大气尘埃颗粒163728019
    1534211417
    阿拉伯半岛与印度西部沙漠大气尘埃混合1613441710Suresh等[5]
    注:“−”表示文献未提到数据。
    下载: 导出CSV
  • [1] Purnachandra Rao V, Ramalingeswara Rao B. Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India[J]. Continental Shelf Research, 1995, 15(14): 1757−1771. doi: 10.1016/0278-4343(94)00092-2
    [2] Windom H. Lithogenous material in marine sediments[M]//Riley J P, Chester R. Chemical Oceanography. London: Academic Press, 1976.
    [3] Zöllmer V, Irion G. Clay mineral and heavy metal distributions in the northeastern North Sea[J]. Marine Geology, 1993, 111(3/4): 223−230. doi: 10.1016/0025-3227(93)90132-F
    [4] Thiry M, Pletsch T. Palygorskite clays in marine sediments: records of extreme climate[J]. Developments in Clay Science, 2011, 3: 101−124.
    [5] Suresh K, Kumar A, Ramaswamy V, et al. Seasonal variability in aeolian dust deposition fluxes and their mineralogical composition over the northeastern Arabian Sea[J]. International Journal of Environmental Science and Technology, 2022, 19(8): 7701−7714. doi: 10.1007/s13762-021-03503-y
    [6] Kessarkar P M, Rao V P, Ahmad S M, et al. Clay minerals and Sr–Nd isotopes of the sediments along the western margin of India and their implication for sediment provenance[J]. Marine Geology, 2003, 202(1/2): 55−69. doi: 10.1016/S0025-3227(03)00240-8
    [7] Lindhorst S, Betzler C, Kroon D. Wind variability over the northern Indian Ocean during the past 4 million years—Insights from coarse aeolian dust (IODP exp. 359, site U1467, Maldives)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 536: 109371. doi: 10.1016/j.palaeo.2019.109371
    [8] Kolla V, Henderson L, Biscaye P E. Clay mineralogy and sedimentation in the western Indian ocean[J]. Deep−Sea Research and Oceanographic Abstracts, 1976, 23(10): 949−961. doi: 10.1016/0011-7471(76)90825-1
    [9] Léon J F, Legrand M. Mineral dust sources in the surroundings of the north Indian Ocean[J]. Geophysical Research Letters, 2003, 30(6): 1309.
    [10] Singh N D, Singh S K. Distribution and cycling of dissolved aluminium in the Arabian Sea and the western Equatorial Indian Ocean[J]. Marine Chemistry, 2022, 243: 104122. doi: 10.1016/j.marchem.2022.104122
    [11] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5718): 67−71. doi: 10.1126/science.1105959
    [12] Kolla V, Kostecki J A, Robinson F, et al. Distributions and origins of clay minerals and quartz in surface sediments of the Arabian Sea[J]. Journal of Sedimentary Research, 1981, 51(2): 563−569.
    [13] Goldberg E D, Griffin J J. The sediments of the northern Indian Ocean[J]. Deep−Sea Research and Oceanographic Abstracts, 1970, 17(3): 513−537. doi: 10.1016/0011-7471(70)90065-3
    [14] Thamban M, Purnachandra Rao V, Schneider R R. Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India[J]. Marine Geology, 2002, 186(3/4): 527−539. doi: 10.1016/S0025-3227(02)00268-2
    [15] Pandarinath K. Clay minerals in SW Indian continental shelf sediment cores as indicators of provenance and palaeomonsoonal conditions: a statistical approach[J]. International Geology Review, 2009, 51(2): 145−165. doi: 10.1080/00206810802622112
    [16] Haq B U, Milliman J D. Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan[M]. New York: Van Nostrand Reinhold Company, 1984.
    [17] Limmer D R, Köhler C M, Hillier S, et al. Chemical weathering and provenance evolution of Holocene-Recent sediments from the western Indus Shelf, northern Arabian Sea inferred from physical and mineralogical properties[J]. Marine Geology, 2012, 10(326/328):101−115.
    [18] Baskaran M, Sarin M M, Somayajulu B L K. Composition of mineral fractions of the Narbada and Tapti estuarine particles and the adjacent Arabian Sea sediments off western India[J]. Chemical Geology, 1984, 45(1/2): 33−51. doi: 10.1016/0009-2541(84)90114-1
    [19] Das S S, Rai A K, Akaram V, et al. Paleoenvironmental significance of clay mineral assemblages in the southeastern Arabian Sea during last 30 kyr[J]. Journal of Earth System Science, 2013, 122(1): 173−185. doi: 10.1007/s12040-012-0251-1
    [20] Fisk M R, Duncan R A, Baxter A N, et al. Reunion hotspot magma chemistry over the past 65 m. y. : Results from leg 115 of the ocean drilling program[J]. Geology, 1989, 17(10): 934−937. doi: 10.1130/0091-7613(1989)017<0934:RHMCOT>2.3.CO;2
    [21] Yu Z, Li H, Li M, et al. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the Northwest Indian Ocean[J]. Journal of Marine Systems, 2018, 180: 173−181. doi: 10.1016/j.jmarsys.2016.11.013
    [22] Lim D, Kim H, Kim J, et al. Mercury proxy for hydrothermal and submarine volcanic activities in the sediment cores of Central Indian Ridge[J]. Marine Pollution Bulletin, 2020, 159: 111513. doi: 10.1016/j.marpolbul.2020.111513
    [23] Clemens S, Prell W, Murray D, et al. Forcing mechanisms of the Indian Ocean monsoon[J]. Nature, 1991, 353(6346): 720−725. doi: 10.1038/353720a0
    [24] Camoin G F, Montaggioni L F, Braithwaite C J R. Late glacial to post glacial sea levels in the western Indian Ocean[J]. Marine Geology, 2004, 206(1/4): 119−146. doi: 10.1016/j.margeo.2004.02.003
    [25] Duncan R A, Backman J, Peterson L, et al. Reunion hotspot activitity through tertiary time: initial results from the ocean drilling program, leg 115[J]. Journal of Volcanology and Geothermal Research, 1989, 36(1/3): 193−198.
    [26] Naidu P D, Malmgren B A. Quaternary carbonate record from the equatorial Indian Ocean and its relationship with productivity changes[J]. Marine Geology, 1999, 161(1): 49−62. doi: 10.1016/S0025-3227(99)00055-9
    [27] Fieux M. Indian Ocean Equatorial Currents[M]//Steele J H. Encyclopedia of Ocean Sciences. 2nd ed. Oxford: Academic Press, 2001: 362−373.
    [28] Fieux M, Reverdin G. Current systems in the Indian Ocean[M]//Steele J H. Encyclopedia of Ocean Sciences. 2nd ed. Oxford: Academic Press, 2001: 728−734.
    [29] Castillo-Trujillo A C, Arzeno-Soltero I B, Giddings S N, et al. Observations and modeling of ocean circulation in the seychelles Plateau region[J]. Journal of Geophysical Research: Oceans, 2021, 126(2): e2020JC016593.
    [30] L’Hégaret P, Beal L M, Elipot S, et al. Shallow cross-equatorial gyres of the Indian Ocean driven by seasonally reversing monsoon winds[J]. Journal of Geophysical Research: Oceans, 2018, 123(12): 8902−8920. doi: 10.1029/2018JC014553
    [31] Schott F A, McCreary J P. The monsoon circulation of the Indian Ocean[J]. Progress in Oceanography, 2001, 51(1): 1−123. doi: 10.1016/S0079-6611(01)00083-0
    [32] Nyadjro E S, Jensen T G, Richman J G, et al. On the relationship between wind, SST, and the thermocline in the Seychelles-Chagos Thermocline Ridge[J]. IEEE Geoscience & Remote Sensing Letters, 2017, PP(12): 1−5.
    [33] Wyrtki K. An equatorial jet in the Indian Ocean[J]. Science, 1973, 181(4096): 262−264. doi: 10.1126/science.181.4096.262
    [34] Valsangkar A B, Borole D, Shejwalkar A S, et al. Potential diagenetic and detrital sources for calcareous sediments from the Carlsberg Ridge, Indian Ocean[J]. Current Science, 2009, 96(8): 1090−1099.
    [35] Govil P, Naidu P D. Late Quaternary changes in depositional processes along the western margin of the Indus Fan[J]. Geo-Marine Letters, 2008, 28(1): 1−6. doi: 10.1007/s00367-007-0083-1
    [36] Dean W E, Leinen M, Stow D A V. Classification of deep-sea, fine-grained sediments[J]. Journal of Sedimentary Petrology, 1985, 55(2): 250−256.
    [37] Ehrmann W, Schmiedl G. Nature and dynamics of North African humid and dry periods during the last 200 000 years documented in the clay fraction of Eastern Mediterranean deep-sea sediments[J]. Quaternary Science Reviews, 2021, 260: 106925. doi: 10.1016/j.quascirev.2021.106925
    [38] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803−832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
    [39] Weaver C E, Beck K C. Miocene of the S. E. United States: a model for chemical sedimentation in a peri-marine environment[J]. Sedimentary Geology, 1977, 17(1/2): 9−21.
    [40] Esquevin J. Influence de la composition chimique des illites sur leur cristallinite[J]. Bulletin-Centres de Recherches Exploration-Production Elf-Aquitaine, 1969, 3(1): 147−153.
    [41] McMurtry G M. Deep-sea sediment: authigenic deposits[M]//Cochran J K, Bokuniewicz H J, Yager P L. Encyclopedia of Ocean Sciences. 3rd ed. London: Academic Press, 2019: 121−132.
    [42] Alizai A, Hillier S, Clift P D, et al. Clay mineral variations in Holocene terrestrial sediments from the Indus Basin[J]. Quaternary Research, 2012, 77(3): 368−381. doi: 10.1016/j.yqres.2012.01.008
    [43] Sirocko F, Lange H. Clay-mineral accumulation rates in the Arabian Sea during the late Quaternary[J]. Marine Geology, 1991, 97(1/2): 105−119. doi: 10.1016/0025-3227(91)90021-U
    [44] Stein R. Clay minerals[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of Marine Geosciences. Dordrecht: Springer Netherlands, 2015: 1−8.
    [45] Tindale N W, Pease P P. Aerosols over the Arabian Sea: atmospheric transport pathways and concentrations of dust and sea salt[J]. Deep−Sea Research Part II: Topical Studies in Oceanography, 1999, 46(8): 1577−1595.
    [46] Tucker R D, Ashwal L D, Torsvik T H. U–Pb geochronology of Seychelles granitoids: a Neoproterozoic continental arc fragment[J]. Earth and Planetary Science Letters, 2001, 187(1−2): 27−38. doi: 10.1016/S0012-821X(01)00282-5
    [47] 马在平, 姜在兴, 钱峥. 我国热带亚热带部分地区花岗岩和片麻岩中黑云母风化研究[J]. 矿物岩石, 1996, 16(2): 17−24. doi: 10.19719/j.cnki.1001-6872.1996.02.003

    Ma Zaiping, Jiang Zaixing, Qian Zheng. Weathering of Biotite in some weathered granite and gneiss from some subtropical and tropical area of China[J]. Journal of Mineralogy and Petrology, 1996, 16(2): 17−24. doi: 10.19719/j.cnki.1001-6872.1996.02.003
    [48] Debrabant P, Fagel N, Chamley H, et al. Neogene to Quaternary clay mineral fluxes in the Central Indian Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 103(3/4): 117−131. doi: 10.1016/0031-0182(93)90138-9
    [49] Liu Z, Wang H, Hantoro W S, et al. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra)[J]. Chemical Geology, 2012, 291: 1−12. doi: 10.1016/j.chemgeo.2011.11.015
    [50] Ganor E. The composition of clay minerals transported to Israel as indicators of Saharan dust emission[J]. Atmospheric Environment. Part A. General Topics, 1991, 25(12): 2657−2664. doi: 10.1016/0960-1686(91)90195-D
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  90
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 修回日期:  2023-01-16
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回