Comparison and evaluation of seven commonly used Antarctic passive microwave sea ice concentration products
-
摘要: 围绕国内外机构发布的南极被动微波海冰密集度产品(PM-SIC)的差异和精度问题,应用MODIS和Sentinel-1反演的海冰密集度,对德国不莱梅大学(产品UB-AMSR2/ASI)、美国冰雪数据中心(产品NSIDC-SSMIS/NT、NSIDC-SSMIS/CDR、NSIDC-AMSR2/NT2)、欧洲气象卫星应用组织海洋与海冰卫星应用中心(产品OSI-SAF/BR-BST)、国家卫星海洋应用中心(产品NSOAS-SMR/NT)和国家卫星气象中心(产品NSMC-MWRI/NT2)发布的7种南极海冰密集度产品进行比较与评估。结果表明:(1)NSIDC-SSMIS/NT与NSIDC-SSMIS/CDR海冰密集度具有较高的一致性(平均偏差为−0.08%,相关系数为0.99),NSOAS-SMR/NT与NSIDC-AMSR2/NT2间的差异最大(平均偏差为−14.41%,相关系数为0.81);(2)7种PM-SIC的变化趋势一致,NSOAS-SMR/NT和NSMC-MWRI/NT2与其他PM-SIC的偏差具有明显的季节性差异;(3)NSOAS-SMR/NT和NSMC-MWRI/NT2与其他PM-SIC均在印度洋扇区、别林斯高晋海和阿蒙森海扇区绝对偏差较大,在罗斯海扇区差异最小。偏差较大的区域主要分布在海冰边缘区及近陆地海域,在高密集度区域差异较小;(4)应用MODIS与Sentinel-1反演的海冰密集度对7种PM-SIC验证表明,NSMC-MWRI/NT2与验证数据的一致性最高。NSOAS-SMR/NT、UB-AMSR2/ASI和OSI-SAF/BR-BST海冰密集度偏低,而NSMC-MWRI/NT2、NSIDC-AMSR2/NT2、NSIDC-SSMIS/CDR和NSIDC-SSMIS/NT海冰密集度偏高。不同海冰密集度产品的比较与评估可为发展遥感反演算法、研制和应用高质量的海冰密集度产品,更好地监测南极海冰动态变化提供依据和参考。Abstract: Focused on the differences and accuracy of passive microwave sea ice concentration products (PM-SIC) released by domestic and foreign institutions, the sea ice concentration retrieved by MODIS and Sentinel-1 is analyzed. The products of University of Bremen (UB-AMSR2/ASI), National Snow and Ice Data Centre (NSIDC-SSMIS/NT, NSIDC-SSMIS/CDR, NSIDC-AMSR2/NT2), European Organization for the Exploitation of Meteorological Satellites (OSI-SAF/BR-BST), National Satellite Ocean Application Service (NSOAS-SMR/NT) and the National Satellite Meteorological Center (NSMC-MWRI/NT2) were conducted. The results show that: (1) The sea ice concentration of NSIDC-SSMIS/NT and NSIDC-SSMIS/CDR has a high consistency (mean deviation of − 0.08%, correlation coefficient of 0.99), and the difference between NSOAS-SMR/NT and NSIDC-AMSR2/NT2 is the largest (mean deviation of −14.41%, correlation coefficient of 0.99); (2) The variation trends of the seven PM-SIC are consistent, and the deviations of NSOAS-SMR/NT and NSMC-MWRI/NT2 show obvious seasonal differences with other PM-SIC; (3) The absolute deviation between NSOAS-SMR/NT, NSMC-MWRI/NT2 and other PM-SIC sectors is large in the Indian Ocean sector, Bellingshausen Sea and Amundsen Sea sector, and the difference is the smallest in the Ross Sea sector. The area with large deviation is mainly distributed in the sea ice margin area and near the land sea, and the difference is small in the high sea ice concentration area; (4) Seven PM-SIC are validated by the MODIS and Sentinel-1 retrieved sea ice concentration, and the consistency between NSMC-MWRI/NT2 and validation data is the highest. sea ice concentration of NSOAS-SMR/NT, UB-AMSR2/ASI and OSI-SAF/BR-BST was low, while the sea ice concentration of NSMC-MWRI/NT2, NSIDC-AMSR2/NT2, NSIDC-SSMIS/CDR and NSIDC-SSMIS/NT is high. The comparison and evaluation of different sea ice intensity products can provide the basis and reference for the development of remote sensing inversion algorithm, the development and application of high-quality sea ice intensity products, and the better monitoring of Antarctic sea ice changes.
-
Key words:
- sea ice concentration /
- passive microwave /
- remote sensing products /
- MODIS /
- Antarctic
-
表 1 国内外主流机构发布的7种被动微波遥感海冰密集度产品
Tab. 1 Seven PM-SIC products of sea ice concentration released by mainstream institutions at hone and abroad
序号 数据集名称 发布机构 传感器 算法 采用的亮温波段 分辨率/km 1 UB-AMSR2/ASI 德国不莱梅大学 AMSR-E/2 ASI 85V, 85H 6.25 2 NSIDC-SSMIS/NT 美国冰雪数据中心 SSM/I-SSMIS NT 19V, 37V, 37H 25 3 NSIDC-SSMIS/CDR 美国冰雪数据中心 SSM/I-SSMIS CDR 19V, 19H, 37V, 37H 25 4 NSIDC-AMSR2/NT2 美国冰雪数据中心 AMSR-E/2 NT2 19V, 19H, 37V, 85V, 85H 12.5 5 OSI-SAF/BR-BST 欧洲气象卫星应用组织海洋与海冰卫星应用中心 SSMIS Bristol & BST 19V, 37H, 37V 10 6 NSOAS-SMR/NT 国家卫星海洋应用中心 SMR NT 19V, 19H, 37V 25 7 NSMC-MWRI/NT2 国家卫星气象中心 MWRI NT2 19V, 19H, 37V, 85V, 85H 12.5 表 2 31个验证数据信息及其冰水像元统计
Tab. 2 31 validation datas and its ice-water pixel statistics
影像序号 日期 时间(UTC) 海水像元数 海冰像元数 阈值/极化方式 1 2019年12月4日 04:05 4 191 29 909 0.10 2 2020年1月1日 19:15 9 307 58 643 0.14 3 2020年1月2日 10:10 9 671 24 455 0.12 4 2020年1月2日 11:50 27 749 28 751 0.13 5 2020年1月3日 09:15 6 914 8 586 0.13 6 2020年1月4日 10:00 10 429 4 293 0.14 7 2020年1月5日 02:25 10 160 18 090 0.12 8 2020年1月7日 15:20 324 18 576 0.15 9 2020年1月17日 07:40 26 465 50 512 0.16 10 2020年2月6日 10:35 16 369 45 532 0.10 11 2020年3月15日 11:35 12 865 18 597 0.15 12 2020年2月1日 08:35 19 388 17 068 0.12 13 2020年2月2日 07:40 1 019 9 129 0.13 14 2020年2月3日 05:05 763 6 637 0.16 15 2020年2月6日 05:35 1 424 10 204 0.12 16 2020年2月9日 06:05 3 362 6 736 0.12 17 2020年2月10日 05:10 2 209 8 960 0.13 18 2020年3月2日 00:35 4 397 4 844 0.12 19 2020年3月4日 23:25 8 736 9 988 0.10 20 2020年3月8日 23:00 6 554 38 237 0.14 21 2020年3月8日 10:35 7 531 37 160 0.11 22 2020年3月9日 23:45 2 051 7 948 0.18 23 2020年4月29日 22:46 4 274 358 807 944 HH 24 2020年5月24日 15:12 1 047 201 7 515 182 HV 25 2020年6月5日 14:24 772 900 6 115 240 HH 26 2020年7月4日 12:53 9 984 758 1 771 155 HH 27 2020年8月27日 04:40 2 649 462 8 128 382 HH 28 2020年9月29日 00:57 6 275 747 3 355 105 HH 29 2020年10月30日 21:24 3 357 233 4 605 976 HH 30 2020年11月30日 15:30 7 930 413 2 891 746 HV 31 2020年12月24日 17:29 4 465 685 5 690 823 HH 注:HH表示水平极化,HV表示交叉极化。 表 3 7种PM-SIC整体差异—相关系数
Tab. 3 Seven PM-SIC overall difference: correlation coefficient
相关系数 NSOAS-
SMR/NTUB-
AMSR2/ASIOSI-
SAF/BR-BSTNSMC-
MWRI/NT2NSIDC-
AMSR2/NT2NSIDC-
SSMIS/CDRNSIDC-
SSMIS/NTNSOAS-SMR/NT 1 0.82 0.97 0.92 0.81 0.95 0.95 UB-AMSR2/ASI 0.82 1 0.83 0.91 0.88 0.82 0.82 OSI-SAF/BR-BST 0.97 0.83 1 0.93 0.83 0.95 0.95 NSMC-MWRI/NT2 0.92 0.91 0.93 1 0.91 0.93 0.93 NSIDC-AMSR2/NT2 0.81 0.88 0.83 0.91 1 0.81 0.81 NSIDC-SSMIS/CDR 0.95 0.82 0.95 0.93 0.81 1 0.99 NSIDC-SSMIS/NT 0.95 0.82 0.95 0.93 0.81 0.99 1 表 4 7种PM-SIC整体差异—平均偏差
Tab. 4 Seven PM-SIC overall difference: Mean Bias
平均偏差/% NSOAS-
SMR/NTUB-
AMSR2/ASIOSI-
SAF/BR-BSTNSMC-
MWRI/NT2NSIDC-
AMSR2/NT2NSIDC-
SSMIS/CDRNSIDC-
SSMIS/NTNSOAS-SMR/NT 0 −9.32 −1.08 −11.06 −14.41 −5.56 −5.57 UB-AMSR2/ASI 9.32 0 8.24 −1.74 −5.09 3.66 3.74 OSI-SAF/BR-BST 1.08 −8.24 0 −9.97 −13.32 −4.57 −4.49 NSMC-MWRI/NT2 11.06 1.74 9.97 0 −3.35 5.40 5.48 NSIDC-AMSR2/NT2 14.41 5.09 13.32 3.35 0 8.75 8.83 NSIDC-SSMIS/CDR 5.65 −3.66 4.57 −5.40 -8.75 0 0.08 NSIDC-SSMIS/NT 5.57 −3.47 4.49 −5.48 −8.83 −0.08 0 表 5 7种PM-SIC与验证数据海冰密集度的相关系数
Tab. 5 Correlation coefficient between seven PM-SIC and validation derived SIC
相关系数 影像序号 NSOAS-
SMR/NTUB-
AMSR2/ASIOSI-
SAF/BR-BSTNSMC-
MWRI/NT2NSIDC-
AMSR2/NT2NSIDC-
SSMIS/CDRNSIDC-
SSMIS/NT1 0.54 0.76 0.61 0.68 0.89 0.61 0.61 2 0.67 0.84 0.65 0.84 0.83 0.64 0.64 3 0.89 0.87 0.90 0.91 0.92 0.89 0.90 4 0.75 0.67 0.72 0.80 0.74 0.75 0.75 5 0.70 0.86 0.77 0.83 0.82 0.76 0.78 6 0.70 0.73 0.62 0.79 0.73 0.65 0.65 7 0.65 0.74 0.57 0.64 0.66 0.45 0.43 8 0.81 0.94 0.80 0.89 0.76 0.79 0.79 9 0.74 0.92 0.82 0.75 0.77 0.82 0.82 10 0.71 0.84 0.63 0.74 0.51 0.77 0.77 11 0.58 0.87 0.66 0.71 0.49 0.57 0.56 12 0.77 0.93 0.84 0.91 0.92 0.79 0.78 13 0.74 0.79 0.80 0.73 0.84 0.76 0.71 14 0.69 0.91 0.67 0.89 0.92 0.65 0.56 15 0.71 0.84 0.67 0.87 0.79 0.64 0.62 16 0.62 0.97 0.71 0.84 0.88 0.68 0.68 17 0.89 0.95 0.94 0.97 0.89 0.90 0.86 18 0.90 0.92 0.84 0.92 0.92 0.90 0.93 19 0.87 0.91 0.80 0.93 0.46 0.49 0.32 20 0.72 0.74 0.74 0.70 0.73 0.61 0.59 21 0.81 0.87 0.81 0.85 0.66 0.85 0.85 22 0.87 0.93 0.44 0.77 0.87 0.26 0.24 23 0.77 0.84 0.77 0.87 0.92 0.74 0.74 24 0.71 0.53 0.79 0.82 0.86 0.77 0.77 25 0.55 0.75 0.52 0.68 0.73 0.41 0.41 26 0.91 0.91 0.91 0.92 0.93 0.90 0.91 27 0.97 0.96 0.98 0.98 0.97 0.98 0.98 28 0.95 0.99 0.95 0.98 0.99 0.97 0.96 29 0.59 0.61 0.63 0.56 0.60 0.63 0.63 30 0.79 0.70 0.84 0.78 0.74 0.79 0.79 31 0.71 0.69 0.72 0.75 0.71 0.73 0.73 平均 0.75 0.83 0.75 0.82 0.79 0.71 0.70 表 6 7种PM-SIC与验证数据海冰密集度间的偏差、绝对偏差、均方根误差和相关系数
Tab. 6 Deviation, absolute deviation, root mean square error and correlation coefficient between seven PM-SIC and validation derived SIC
NSOAS-
SMR/NTUB-
AMSR2/ASIOSI-SAF/BR-
BSTNSMC-
MWRI/NT2NSIDC-
AMSR2/NT2NSIDC-
SSMIS/CDRNSIDC-
SSMIS/NT偏差/% −7.41 −6.88 −7.40 5.00 11.74 1.68 1.61 绝对偏差/% 17.23 15.22 17.90 13.40 15.29 15.70 16.05 均方根误差/% 21.56 19.50 21.71 18.23 21.55 20.60 20.80 相关系数 0.75 0.83 0.75 0.82 0.79 0.71 0.70 1 NSOAS-SMR/NT与其他被动微波海冰密集度产品在南极各海域的差异
1 Differences between NSOAS-SMR/NT and other PM-SIC products in different Antarctic seas
海域 对比海冰密集度产品 偏差/% 绝对偏差/% 均方根差异/% 相关系数 威德尔海扇区 UB-AMSR2/ASI −10.23 11.34 15.34 0.79 OSI-SAF/BR-BST −1.71 3.76 4.86 0.97 威德尔海扇区 NSMC-MWRI/NT2 −11.41 11.53 14.12 0.89 NSIDC-AMSR2/NT2 −13.67 13.88 17.84 0.79 NSIDC-SSMIS/CDR −7.12 7.60 9.88 0.93 NSIDC-SSMIS/NT −6.97 7.70 9.91 0.93 印度洋扇区 UB-AMSR2/ASI −9.25 13.43 16.51 0.81 OSI-SAF/BR-BST −3.13 4.49 5.88 0.98 NSMC-MWRI/NT2 −12.00 12.1 13.79 0.94 NSIDC-AMSR2/NT2 −19.02 19.35 21.95 0.82 NSIDC-SSMIS/CDR −4.20 5.23 6.70 0.96 NSIDC-SSMIS/NT −4.15 5.28 6.76 0.96 西太平洋扇区 UB-AMSR2/ASI −9.38 12.63 16.11 0.82 OSI-SAF/BR-BST 0.66 3.74 4.96 0.97 NSMC-MWRI/NT2 −11.39 11.50 13.59 0.93 NSIDC-AMSR2/NT2 −15.36 16.28 19.51 0.82 NSIDC-SSMIS/CDR −3.03 5.35 6.78 0.95 NSIDC-SSMIS/NT −2.84 5.52 7.00 0.95 罗斯海扇区 UB-AMSR2/ASI −6.34 7.70 10.37 0.88 OSI-SAF/BR-BST −0.21 2.24 3.20 0.98 NSMC-MWRI/NT2 −8.98 9.00 10.45 0.95 NSIDC-AMSR2/NT2 −11.58 11.75 14.85 0.83 NSIDC-SSMIS/CDR −4.73 5.16 6.47 0.96 NSIDC-SSMIS/NT −4.72 5.18 6.48 0.96 别林斯高晋海和阿蒙森海扇区 UB-AMSR2/ASI −14.24 15.56 17.88 0.83 OSI-SAF/BR-BST −1.33 3.44 4.39 0.97 NSMC-MWRI/NT2 −13.99 14.25 15.30 0.95 NSIDC-AMSR2/NT2 −17.87 18.32 20.18 0.85 NSIDC-SSMIS/CDR −7.99 8.09 9.72 0.95 NSIDC-SSMIS/NT −7.99 8.09 9.72 0.95 2 NSMC-MWRI/NT2与其他被动微波海冰密集度产品在南极各海域的差异
2 Differences between NSMC-MWRI/NT2 and other PM-SIC products in different Antarctic seas
海域 海冰密集度产品 偏差/% 绝对偏差/% 均方根差异/% 相关系数 威德尔海扇区 UB-AMSR2/ASI 1.18 4.58 8.37 0.87 OSI-SAF/BR-BST 9.70 9.86 12.13 0.91 NSOAS-SMR/NT 11.41 11.53 14.12 0.89 威德尔海扇区 NSIDC-AMSR2/NT2 −2.26 3.19 7.09 0.92 NSIDC-SSMIS/CDR 4.29 4.99 7.84 0.93 NSIDC-SSMIS/NT 4.44 5.14 7.93 0.93 印度洋扇区 UB-AMSR2/ASI 2.76 6.06 9.81 0.92 OSI-SAF/BR-BST 8.88 9.37 10.73 0.95 NSOAS-SMR/NT 12.00 12.10 13.79 0.94 NSIDC-AMSR2/NT2 −7.01 7.81 11.10 0.89 NSIDC-SSMIS/CDR 7.81 8.60 10.64 0.92 NSIDC-SSMIS/NT 7.86 8.66 10.72 0.92 西太平洋扇区 UB-AMSR2/ASI 2.01 5.63 8.86 0.93 OSI-SAF/BR-BST 12.05 12.23 13.56 0.94 NSOAS-SMR/NT 11.39 11.5 13.59 0.93 NSIDC-AMSR2/NT2 −3.97 5.66 8.81 0.92 NSIDC-SSMIS/CDR 8.36 8.89 11.59 0.92 NSIDC-SSMIS/NT 8.55 9.06 11.85 0.91 罗斯海扇区 UB-AMSR2/ASI 2.64 4.02 6.67 0.93 OSI-SAF/BR-BST 8.78 8.86 9.84 0.96 NSOAS-SMR/NT 8.98 9.00 10.45 0.95 NSIDC-AMSR2/NT2 −2.60 3.34 6.91 0.91 NSIDC-SSMIS/CDR 4.25 4.63 6.45 0.95 NSIDC-SSMIS/NT 4.26 4.64 6.49 0.95 别林斯高晋海和阿蒙森海扇区 UB-AMSR2/ASI −0.24 5.33 8.54 0.90 OSI-SAF/BR-BST 12.66 13.16 14.3 0.94 NSOAS-SMR/NT 13.99 14.25 15.3 0.95 NSIDC-AMSR2/NT2 −3.87 5.02 8.66 0.92 NSIDC-SSMIS/CDR 6.00 8.07 9.72 0.92 NSIDC-SSMIS/NT 6.00 8.07 9.73 0.92 -
[1] Turner J, Bindschadler R A, Convey P, et al. Antarctic Climate Change and the Environment[M]. Cambridge: SCAR, 2009. [2] Parkinson C L, Cavalieri D J. A 21 year record of Arctic sea-ice extents and their regional, seasonal and monthly variability and trends[J]. Annals of Glaciology, 2002, 34: 441−446. doi: 10.3189/172756402781817725 [3] 王今菲, 杨清华, 于乐江, 等. 南极海冰变化及其气候效应研究述评[J]. 海洋学报, 2021, 43(7): 11−22.Wang Jinfei, Yang Qinghua, Yu Lejiang, et al. A review on Antarctic sea ice change and its climate effects[J]. Haiyang Xuebao, 2021, 43(7): 11−22. [4] 赵羲, 苏昊月, 石中玉, 等. 南极海冰密集度多源数据的交叉检验[J]. 武汉大学学报·信息科学版, 2015, 40(11): 1460−1466.Zhao Xi, Su Haoyue, Shi Zhongyu, et al. Intercomparison of multi-sources sea ice concentration data in Antarctic[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1460−1466. [5] 解思梅, 邹斌, 王毅. 南极海冰的长期变化趋势[J]. 海洋预报, 1996(3): 21−29.Xie Simei, Zou Bin, Wang Yi. Long-range variation trend of the Antarctic sea ice[J]. Marine Forecasts, 1996(3): 21−29. [6] Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979−2010[J]. The Cryosphere, 2012, 6(4): 881−889. doi: 10.5194/tc-6-881-2012 [7] Cavalieri D J, Gloersen P, Campbell W J. Determination of sea ice parameters with the NIMBUS 7 SMMR[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D4): 5355−5369. doi: 10.1029/JD089iD04p05355 [8] Comiso J C, Cavalieri D J, Parkinson C L, et al. Passive microwave algorithms for sea ice concentration: a comparison of two techniques[J]. Remote Sensing of Environment, 1997, 60(3): 357−384. doi: 10.1016/S0034-4257(96)00220-9 [9] Markus T, Cavalieri D J. An enhancement of the NASA Team sea ice algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3): 1387−1398. doi: 10.1109/36.843033 [10] Kern S, Lavergne T, Notz D, et al. Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations[J]. The Cryosphere, 2019, 13(12): 3261−3307. doi: 10.5194/tc-13-3261-2019 [11] Spreen G, Kaleschke L, Heygster G. Sea ice remote sensing using AMSR-E 89-GHz channels[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S03. [12] Ivanova N, Johannessen O M, Pedersen L T, et al. Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: a comparison of eleven sea ice concentration algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7233−7246. doi: 10.1109/TGRS.2014.2310136 [13] Andersen S, Tonboe R, Kaleschke L, et al. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2007, 112(C8): C08004. [14] Ivanova N, Pedersen L T, Tonboe R T, et al. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations[J]. The Cryosphere, 2015, 9(5): 1797−1817. doi: 10.5194/tc-9-1797-2015 [15] 苏昊月, 庞小平, 赵羲. 南极海冰边界AMSR-E密集度产品精度检验[J]. 武汉大学学报·信息科学版, 2016, 41(4): 559−564.Su Haoyue, Pang Xiaoping, Zhao Xi. Assessment of AMSR-E sea ice concentration products at ice edges in Antarctic[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 559−564. [16] 赵杰臣, 周翔, 孙晓宇, 等. 北极遥感海冰密集度数据的比较和评估[J]. 遥感学报, 2017, 21(3): 351−364.Zhao Jiechen, Zhou Xiang, Sun Xiaoyu, et al. The inter comparison and assessment of satellite sea-ice concentration datasets from the Arctic[J]. Journal of Remote Sensing, 2017, 21(3): 351−364. [17] 王晓雨, 管磊, 李乐乐. FY-3B/MWRI和Aqua/AMSR-E海冰密集度比较及印证[J]. 遥感学报, 2018, 22(5): 723−736.Wang Xiaoyu, Guan Lei, Li Lele. Comparison and validation of sea ice concentration from FY-3B/MWRI and Aqua/AMSR-E observations[J]. Journal of Remote Sensing, 2018, 22(5): 723−736. [18] Andersen S, Tonboe R, Kern S, et al. Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: an intercomparison of nine algorithms[J]. Remote Sensing of Environment, 2006, 104(4): 374−392. doi: 10.1016/j.rse.2006.05.013 [19] 李钊, 严明, 刘凯, 等. 两种准实时遥感海冰密集度产品在中国第五次北极考察期间的适用性评估[J]. 海洋预报, 2018, 35(3): 8−16.Li Zhao, Yan Ming, Liu Kai, et al. The assessment of the applicability of AMSR2 and SSMIS near real time satellite sea ice concentration during 5th CHINARE Arctic cruise[J]. Marine Forecasts, 2018, 35(3): 8−16. [20] 刘婷婷, 杨子健, 王泽民, 等. 利用风云3D微波成像仪数据估算北极海冰密集度的精度评价[J]. 武汉大学学报·信息科学版, 2021, 46(12): 1843−1851.Liu Tingting, Yang Zijian, Wang Zemin, et al. Evaluation of Arctic sea ice concentration estimated by Fengyun-3D microwave radiation imager[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1843−1851. [21] 郑杨龙, 卢鹏, 李志军, 等. 基于Radarsat-2 SAR图像分类与HY-2微波辐射计反演获取北极海冰密集度的比较研究[J]. 极地研究, 2016, 28(3): 413−423.Zheng Yanglong, Lu Peng, Li Zhijun, et al. Comparisons of Arctic sea ice concentrations obtained by classification of radarsat-2 synthetic aperture radar imagery and retrievals from HY-2 scanning microwave radiometer[J]. Chinese Journal of Polar Research, 2016, 28(3): 413−423. [22] 谢涛, 赵立. 海冰密集度卫星遥感反演研究进展[J]. 海洋科学进展, 2022, 40(3): 351−366.Xie Tiao, Zhao Li. Advances in sea ice concentration retrieval based on satellite remote sensing[J]. Advances in Marine Science, 2022, 40(3): 351−366. [23] 赵进平, 任敬萍. 从航空数字影像提取北极海冰形态参数的方法研究[J]. 遥感学报, 2000, 21(4): 271−278.Zhao Jinping, Ren Jingping. Study on the method to analyze parameters of Arctic sea ice from airborne digital imagery[J]. Journal of Remote Sensing, 2000, 21(4): 271−278. [24] Partington K, Flynn T, Lamb D, et al. Late twentieth century northern Hemisphere sea-ice record from U. S. National Ice Center ice charts[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 3343. doi: 10.1029/2002JC001623 [25] 梁爽. 极地海冰密集度和厚度遥感反演方法研究[D]. 北京: 中国科学院大学, 2021.Liang Shuang. Research on polar sea ice concentration and thickness retrieval using remote sensing observations[D]. Beijing: University of Chinese Academy of Sciences, 2021. [26] 王剑, 邱玉宝, 熊振华, 等. 北极海冰密集度遥感数据产品对比及航道关键区验证研究[J]. 极地研究, 2020, 32(3): 301−313.Wang Jian, Qiu Yubao, Xiong Zhenhua, et al. Comparison and verification of remote sensing sea ice concentration products for Arctic shipping regions[J]. Chinese Journal of Polar Research, 2020, 32(3): 301−313. [27] 苏洁, 郝光华, 叶鑫欣, 等. 极区海冰密集度AMSR-E数据反演算法的试验与验证[J]. 遥感学报, 2013, 17(3): 495−513.Su Jie, Hao Guanghua, Ye Xinxin, et al. The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region[J]. Journal of Remote Sensing, 2013, 17(3): 495−513. [28] Hao Hairui, Su Jie, Shi Qian, et al. Arctic sea ice concentration retrieval using the DT-ASI algorithm based on FY-3B/MWRI data[J]. Acta Oceanologica Sinica, 2021, 40(11): 176−188. doi: 10.1007/s13131-021-1839-6 [29] Hao Guanghua, Su Jie. A study on the dynamic tie points ASI algorithm in the Arctic Ocean[J]. Acta Oceanologica Sinica, 2015, 34(11): 126−135. doi: 10.1007/s13131-015-0659-y [30] Chen Ying, Zhao Xi, Pang Xiaoping, et al. Daily sea ice concentration product based on brightness temperature data of FY-3D MWRI in the Arctic[J]. Big Earth Data, 2022, 6(2): 164−178. doi: 10.1080/20964471.2020.1865623 [31] Cavalieri D J, Markus T, Hall D K, et al. Assessment of AMSR-E Antarctic winter sea-ice concentrations using Aqua MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3331−3339. doi: 10.1109/TGRS.2010.2046495 [32] Liang Shunlin, Strahler A H, Walthall C. Retrieval of land surface albedo from satellite observations: a simulation study[J]. Journal of Applied Meteorology, 1999, 38(6): 712−725. doi: 10.1175/1520-0450(1999)038<0712:ROLSAF>2.0.CO;2 [33] Shi Qian, Su Jie, Heygster G, et al. Step-by-step validation of Antarctic ASI AMSR-E Sea-Ice concentrations by MODIS and an Aerial Image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(1): 392−403. [34] 杨魁, 杨建兵, 江冰茹. Sentinel-1 卫星综述[J]. 城市勘测, 2015(2): 24−27.Yang Kui, Yang Jianbing, Jiang Bingru. Sentinel-1 satellite overview[J]. Urban Geotechnical Investigation & Surveying, 2015(2): 24−27. [35] 朱婷婷. 南北极典型场景SAR海冰解译研究[D]. 武汉: 武汉大学, 2017.Zhu Tingting. Interpretation of sea ice geophysical parameters from SAR in selected regions of the Antarctic and the Arctic[D]. Wuhan: Wuhan University, 2017. [36] 刘境舟, 赵亮, 王圣, 等. 威德尔海海冰年际变化特征[J]. 极地研究, 2021, 33(4): 518−528.Liu Jingzhou, Zhao Liang, Wang Sheng, et al. Interannual variation characteristics of sea ice in the Weddell Sea[J]. Chinese Journal of Polar Research, 2021, 33(4): 518−528. [37] 刘森, 邹斌, 石立坚, 等. 基于FY-3C微波辐射计数据的极区海冰密集度反演方法研究[J]. 海洋学报, 2020, 42(1): 113−122.Liu Sen, Zou Bin, Shi Lijian, et al. Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data[J]. Haiyang Xuebao, 2020, 42(1): 113−122. -