留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波状涌潮在变化地形上的水动力研究

李晓涵 屈科 杨元平 王旭

李晓涵,屈科,杨元平,等. 波状涌潮在变化地形上的水动力研究[J]. 海洋学报,2023,45(7):90–101 doi: 10.12284/hyxb2023080
引用本文: 李晓涵,屈科,杨元平,等. 波状涌潮在变化地形上的水动力研究[J]. 海洋学报,2023,45(7):90–101 doi: 10.12284/hyxb2023080
Li Xiaohan,Qu Ke,Yang Yuanping, et al. Study on the hydrodynamics of undular tidal bore over the uneven seabed[J]. Haiyang Xuebao,2023, 45(7):90–101 doi: 10.12284/hyxb2023080
Citation: Li Xiaohan,Qu Ke,Yang Yuanping, et al. Study on the hydrodynamics of undular tidal bore over the uneven seabed[J]. Haiyang Xuebao,2023, 45(7):90–101 doi: 10.12284/hyxb2023080

波状涌潮在变化地形上的水动力研究

doi: 10.12284/hyxb2023080
基金项目: 浙江省自然科学基金(LY22E090007);浙江省河口海岸重点实验室开放基金(ZIHE21009);国家级大学生创新创业训练计划(202210536016);湖南省大学生创新创业训练计划(2491);长沙理工大学教学改革研究项目(XJG22098)。
详细信息
    作者简介:

    李晓涵(2002-),男,山东省高唐县人,主要从事波浪水动力研究。E-mail: lxh202004330107@163.com

    通讯作者:

    屈科(1985-),男,陕西省三原县人,博士,副教授,主要研究方向为计算流体力学、海岸工程和海洋工程。E-mail: kqu@csust.edu.cn

  • 中图分类号: TV139.2; P753

Study on the hydrodynamics of undular tidal bore over the uneven seabed

  • 摘要: 本文采用非静压单相流模型(NHWAVE)研究了波状涌潮在变化地形上的传播演变特性。通过设置合理的计算工况,系统分析了涌潮高度、潮前水深和斜坡坡度对波状涌潮水动力特性的影响。计算结果表明,涌潮高度和潮前水深对波状涌潮在变化地形上的水动力特性影响显著,不同的地形坡度对波状涌潮水动力特性影响较小。变化地形的存在可导致涌潮高度显著增大,引起沿程最大水位的剧烈变化,并且使涌潮传播速度降低。随涌潮高度的逐渐增加,斜坡前后潮差持续增大,同时表层速度与水深平均速度均呈现增大趋势。当增加潮前水深时,斜坡前后潮差减小,表层速度与水深平均速度单调递减。本文研究成果对于正确认识波状涌潮在变化地形上的传播演变规律有一定的参考意义,为波状涌潮河段涉水建筑物的工程设计及安全评估提供了科学依据。
  • 图  1  溃坝波实验布置图

    Fig.  1  Experimental layout of dam-break wave

    图  2  不同测点下波面高程空间对比

    Fig.  2  Spatial distribution of water elevations recorded at different wave gauges

    图  3  规则波实验布置图

    Fig.  3  Experimental layout of regular wave

    图  4  不同测点下波面高程空间对比

    Fig.  4  Spatial distribution of water elevations recorded at different wave gauges

    图  5  数值计算布置

    Fig.  5  Computational layout

    图  6  不同时间情况下水体的速度云图

    Fig.  6  Snapshots of the velocity contour of water body at different time instances

    图  7  不同测点处的水面时程曲线

    Fig.  7  Time series of the water surface elevation at different wave gauges

    图  8  不同测点表层速度的时间分布

    Fig.  8  Time series of the water surface velocity at different wave gauges

    图  9  涌潮高度的空间分布

    Fig.  9  Spatial distribution of the maximum tidal bore height

    图  10  最大水面高程的空间分布

    Fig.  10  Spatial distribution of the maximum water surface elevations

    图  11  涌潮传播过程中流速分布

    Fig.  11  Velocity distribution in the process of tidal surge propagation

    图  12  涌潮传播过程潮速的沿程分布

    Fig.  12  Spatial distribution of the tidal velocity in the process of tidal surge propagation

    图  13  不同入射潮高下最大涌潮高度的空间分布

    Fig.  13  Spatial distributions of the maximum tidal bore height under different incident tidal height

    图  14  不同入射潮高下最大水面高程的空间分布

    Fig.  14  Spatial distributions of maximum water surface elevation under different incident tidal height

    图  15  涌潮传播过程中流速随潮高变化对比

    Fig.  15  Comparisons of flow velocity changes with incident tidal height during surge propagation

    图  16  不同入射潮高下潮速的空间分布

    Fig.  16  Spatial distribution of tidal velocity at different incident tidal height

    图  17  不同潮前水深下最大涌潮高度的空间分布

    Fig.  17  Spatial distributions of the maximum tidal bore height under different pre-tide water depth

    图  18  不同潮前水深下最大水面高程的空间分布

    Fig.  18  Spatial distributions of maximum water surface elevation under different pre-tide water depth

    图  19  涌潮传播过程中流速随潮前水深变化对比

    Fig.  19  Comparisons of flow velocity changes with pre-tide water depth during surge propagation

    图  20  不同潮前水深下潮速的空间分布

    Fig.  20  Spatial distribution of tidal velocity at different pre-tide water depth

    图  21  不同斜坡坡度下最大涌潮高度的空间分布

    Fig.  21  Spatial distribution of the maximum tidal bore height under different slope

    图  22  不同斜坡坡度下最大水面高程的空间分布

    Fig.  22  Spatial distribution of maximum water surface elevation under different slope

    图  23  涌潮传播过程中流速随斜坡坡度变化对比

    Fig.  23  Comparison of flow velocity changes with slope during surge propagation

    图  24  不同斜坡坡度下潮速的空间分布

    Fig.  24  Spatial distribution of tidal velocity at different slope

    表  1  实验工况

    Tab.  1  Experimental setups

    工况编号 $ {h}_{\mathrm{u}} $/m $ {h}_{\mathrm{d}} $/m $ \theta $/(°)
    Y1 0.4 0.04 0
    Y2 0.4 0.08 0
    Y3 0.4 0.16 0
    Y4 0.4 0.04 0.02
    Y5 0.4 0.08 0.02
    Y6 0.4 0.16 0.02
    下载: 导出CSV

    表  2  数值模拟工况设置

    Tab.  2  Parameter setup of numerical simulation

    工况 涌潮高度H/m 潮前水深h0/m 底坡坡度tan β 弗劳德数Fr
    A1 0.60 2.0 1∶5 1.220
    A2 0.40 2.0 1∶5 1.150
    A3 0.45 2.0 1∶5 1.167
    A4 0.50 2.0 1∶5 1.185
    A5 0.55 2.0 1∶5 1.204
    B1 0.60 1.9 1∶5 1.234
    B2 0.60 2.1 1∶5 1.212
    B3 0.60 2.2 1∶5 1.203
    B4 0.60 2.3 1∶5 1.194
    C1 0.60 2.0 1∶1 1.220
    C2 0.60 2.0 1∶3 1.220
    C3 0.60 2.0 1∶7 1.220
    C4 0.60 2.0 1∶9 1.220
    下载: 导出CSV
  • [1] 戚蓝, 肖厅厅, 张芝永, 等. 涌潮水流CFD数值模拟[J]. 水利水运工程学报, 2019(3): 32−40.

    Qi Lan, Xiao Tingting, Zhang Zhiyong, et al. Numerical simulation of tidal bore based on CFD method[J]. Hydro-Science and Engineering, 2019(3): 32−40.
    [2] 林炳尧. 钱塘江涌潮的特性[M]. 北京: 海洋出版社, 2008: 87, 130.

    Lin Bingyao. Characteristics of Qiantang River Tide[M]. Beijing: China Ocean Press, 2008: 87, 130.
    [3] 黄静, 潘存鸿, 陈刚, 等. 涌潮的水槽模拟及验证[J]. 水利水运工程学报, 2013(2): 1−8.

    Huang Jing, Pan Cunhong, Chen Gang, et al. Experimental simulation and validation of the tidal bore in the flume[J]. Hydro-Science and Engineering, 2013(2): 1−8.
    [4] 潘存鸿, 鲁海燕, 曾剑. 钱塘江涌潮特性及其数值模拟[J]. 水利水运工程学报, 2008(2): 1−9.

    Pan Cunhong, Lu Haiyan, Zeng Jian. Characteristic and numerical simulation of tidal bore in Qiantang River[J]. Hydro-Science and Engineering, 2008(2): 1−9.
    [5] 林伟栋, 赵西增, 叶洲腾, 等. 涌潮运动的CFD模拟研究[J]. 水动力学研究与进展, 2017, 32(6): 696−703.

    Lin Weidong, Zhao Xizeng, Ye Zhouteng, et al. Numerical simulation of tidal bore using CFD model[J]. Chinese Journal of Hydrodynamics, 2017, 32(6): 696−703.
    [6] 林炳尧, 黄世昌, 毛献忠. 波状水跃和波状涌潮的分析[J]. 水动力学研究与进展, 1998, 13(1): 106−115.

    Lin Bingyao, Huang Shichang, Mao Xianzhong. Analyses of undular hydraulic jump and undular bore[J]. Journal of Hydrodynamics, 1998, 13(1): 106−115.
    [7] Chanson H. Current knowledge in tidal bores and their environmental, ecological and cultural impacts[J]. Environmental Fluid Mechanics, 2011, 11(1): 77−98. doi: 10.1007/s10652-009-9160-5
    [8] 刘文虎, 朱小华, 张钟哲, 等. 钱塘江涌潮观测及其动力学特性研究[J]. 大连海洋大学学报, 2015, 30(5): 567−572.

    Liu Wenhu, Zhu Xiaohua, Zhang Zhongzhe, et al. Observation and dynamic characteristics of tidal bore in Qiantang River, China[J]. Journal of Dalian Ocean University, 2015, 30(5): 567−572.
    [9] Wolanski E, Williams D, Spagnol S, et al. Undular tidal bore dynamics in the Daly Estuary, Northern Australia[J]. Estuarine, Coastal and Shelf Science, 2004, 60(4): 629−636. doi: 10.1016/j.ecss.2004.03.001
    [10] Simpson J H, Fisher N R, Wiles P. Reynolds stress and TKE production in an estuary with a tidal bore[J]. Estuarine, Coastal and Shelf Science, 2004, 60(4): 619−627. doi: 10.1016/j.ecss.2004.03.006
    [11] 岳书波, 曾剑, 陈永平, 等. 涌潮潮头掺气的模型试验研究[J]. 工程科学与技术, 2018, 50(1): 28−35.

    Yue Shubo, Zeng Jian, Chen Yongping, et al. Investigation of aeration of tidal bore front by physical experiments[J]. Advanced Engineering Sciences, 2018, 50(1): 28−35.
    [12] 潘存鸿, 鲁海燕. 二维浅水间断流动数值模型在涌潮模拟中的应用[J]. 浙江大学学报(工学版), 2009, 43(11): 2107−2113.

    Pan Cunhong, Lu Haiyan. 2D numerical model for discontinuous shallow water flows and application to simulation of tidal bore[J]. Journal of Zhejiang University (Engineering Science), 2009, 43(11): 2107−2113.
    [13] 潘存鸿, 鲁海燕, 于普兵, 等. 钱塘江二维涌潮数值模拟及其应用[J]. 浙江水利科技, 2008(2): 4−8.

    Pan Cunhong, Lu Haiyan, Yu Pubing, et al. 2D numerical simulation of bore on Qiantang River and its application[J]. Zhejiang Hydrotechnics, 2008(2): 4−8.
    [14] 黄婷, 张怀, 石耀霖. 基于Boussinesq型方程的钱塘江涌潮数值模拟[J]. 地球物理学报, 2022, 65(1): 79−95.

    Huang Ting, Zhang Huai, Shi Yaolin. Numerical simulation of the tidal bore in the Qiantang River based on Boussinesq-type equations[J]. Chinese Journal of Geophysics, 2022, 65(1): 79−95.
    [15] 谢东风, 潘存鸿, 陆波, 等. 基于实测资料的钱塘江涌潮水动力学特性研究[J]. 水动力学研究与进展, 2012, 27(5): 501−508.

    Xie Dongfeng, Pan Cunhong, Lu Bo, et al. A study on the hydrodynamic characteristics of the Qiantang tidal bore based on field data[J]. Chinese Journal of Hydrodynamics, 2012, 27(5): 501−508.
    [16] 张巍, 贺治国, 谈利明, 等. 基于定点连续观测的钱塘江涌潮特性研究[J]. 水动力学研究与进展, 2017, 32(2): 253−259.

    Zhang Wei, He Zhiguo, Tan Liming, et al. Dynamic characteristics of Qiantang tidal bore based on field observations at a fixed location[J]. Chinese Journal of Hydrodynamics, 2017, 32(2): 253−259.
    [17] Yeh H H, Mok K M. On turbulence in bores[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 821−828. doi: 10.1063/1.857630
    [18] Treske A. Undular bores (favre-waves) in open channels-experimental studies[J]. Journal of Hydraulic Research, 1994, 32(3): 355−370. doi: 10.1080/00221689409498738
    [19] Miahr H C. Physical modelling of the flow field in an UNDULAR tidal bore[J]. Journal of Hydraulic Research, 2005, 43(3): 234−244. doi: 10.1080/00221680509500118
    [20] 杨火其, 潘存鸿, 周建炯, 等. 涌潮水力学特性试验研究[J]. 水电能源科学, 2008, 26(4): 136−138.

    Yang Huoqi, Pan Cunhong, Zhou Jianjiong, et al. Experiment study on hydraulic properties of tidal bore[J]. Water Resources and Power, 2008, 26(4): 136−138.
    [21] 赵雪华. 钱塘江涌潮的一维数学模型[J]. 水利学报, 1985(1): 50−54.

    Zhao Xuehua. A one-dimensional mathematical model of the surge of Qiantang River[J]. Journal of Hydraulic Engineering, 1985(1): 50−54.
    [22] 潘存鸿. 三角形网格下求解二维浅水方程的和谐Godunov格式[J]. 水科学进展, 2007, 18(2): 204−209.

    Pan Cunhong. Well-balanced Godunov-type scheme for 2D shallow water flow with triangle mesh[J]. Advances in Water Science, 2007, 18(2): 204−209.
    [23] 潘存鸿, 徐昆. 三角形网格下求解二维浅水方程的KFVS格式[J]. 水利学报, 2006, 37(7): 858−864.

    Pan Cunhong, Xu Kun. Kinetic flux vector splitting scheme for solving 2-D shallow water equations with triangular mesh[J]. Journal of Hydraulic Engineering, 2006, 37(7): 858−864.
    [24] Landrini M, Colagrossi A, Greco M, et al. Gridless simulations of splashing processes and near-shore bore propagation[J]. Journal of Fluid Mechanics, 2007, 591: 183−213. doi: 10.1017/S0022112007008142
    [25] Li Jing, Liu Huaxing, Tan S K. Lagrangian modeling of tidal bores passing through bridge piers[J]. Journal of Hydrodynamics, 2010, 22(1): 496−502.
    [26] Furuyama S I, Chanson H. A numerical study of open channel flow hydrodynamics and turbulence of the tidal bore and dam-break flows[J]. Hydraulic Model, 2008.
    [27] 赵渭军, 赵刚, 李永和. 钱塘江海塘护塘建筑物技术演进[J]. 浙江水利科技, 2015, 43(2): 34−37.

    Zhao Weijun, Zhao Gang, Li Yonghe. Investigation on facilities for protecting Qiantang Estuary seadyke[J]. Zhejiang Hydrotechnics, 2015, 43(2): 34−37.
    [28] 杨火其, 杨永楚, 庄娟芳. 钱塘江河口斜坡式土堤水下防护面板稳定性试验[J]. 水利水运工程学报, 2001(3): 65−68.

    Yang Huoqi, Yang Yongchu, Zhuang Juanfang. Stability experiment of underwater face-plate on sloping dyke in Qiantangjiang Estuary[J]. Hydro-Science and Engineering, 2001(3): 65−68.
    [29] 陈伟, 倪舒娴, 袁淼. 钱塘江海塘建设的历史沿革[J]. 浙江建筑, 2018, 35(9): 1−6. doi: 10.3969/j.issn.1008-3707.2018.09.001

    Chen Wei, Ni Shuxian, Yuan Miao. Historical evolution of seawall construction for the Qiantang River[J]. Zhejiang Construction, 2018, 35(9): 1−6. doi: 10.3969/j.issn.1008-3707.2018.09.001
    [30] Ma Gangfeng, Kirby J T, Shi Fengyan. Numerical simulation of tsunami waves generated by deformable submarine landslides[J]. Ocean Modelling, 2013, 69: 146−165. doi: 10.1016/j.ocemod.2013.07.001
    [31] Liu Wenjun, Wang Bo, Guo Yakun, et al. Experimental investigation on the effects of bed slope and tailwater on dam-break flows[J]. Journal of Hydrology, 2020, 590: 125256. doi: 10.1016/j.jhydrol.2020.125256
    [32] Zhang Fengjie, Wang Bo, Guo Yakun. Experimental study of the dam-break waves in triangular channels with a sloped wet bed[J]. Ocean Engineering, 2022, 255: 111399. doi: 10.1016/j.oceaneng.2022.111399
    [33] Yao Yu, Huang Zhenhua, Monismith S G, et al. 1DH Boussinesq modeling of wave transformation over fringing reefs[J]. Ocean Engineering, 2012, 47: 30−42. doi: 10.1016/j.oceaneng.2012.03.010
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  78
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-03
  • 修回日期:  2023-02-03
  • 网络出版日期:  2023-08-03
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回