Interaction between marginal salt marsh patches and tidal channel evolution on tidal flats
-
摘要: 潮滩前缘盐沼植被簇团可以通过改变水动力及泥沙运动等过程影响潮沟系统的地形地貌,而潮沟系统的地形特征也会影响盐沼簇团的生长、扩张与侵蚀,但对盐沼簇团与潮沟系统地貌演变的相互作用机制尚缺乏认识。针对这一问题,本文构建了考虑盐沼植被动态演变的潮滩生物动力地貌耦合模型,模拟了盐沼植被簇团生长扩张与潮沟系统地貌演变过程,分析了不同初始数量的盐沼植被簇团与潮沟系统的空间格局及形态参数间的双向反馈。结果表明,潮沟先迅速向海陆两侧延伸,后发育出大量分汊;盐沼簇团向周边扩张后未被潮沟切割区域逐渐连成片。少量盐沼簇团能够增加潮沟密度,促进边缘冲刷式潮沟系统的发育。潮沟的走向受盐沼簇团分布位置及数量的影响,多个盐沼植被簇团间的水流集中比单个簇团的边缘水流冲刷更易形成潮沟。在盐沼植被簇团与潮沟系统共同发育初期,潮沟系统发育受盐沼植被簇团的促进作用较大,后期潮沟内比簇团边缘更易形成水流汇聚,盐沼簇团的影响逐渐由促进作用转为稳定作用。此外,潮沟的存在限制了盐沼植被的横向扩散,切割了盐沼植被簇团,影响盐沼植被的空间分布格局。本研究揭示了盐沼植被簇团与潮沟系统地貌耦合演化机制,可为盐沼潮滩生态系统保护修复提供科学依据。Abstract: Marginal salt marsh patches play a crucial role in the morphological evolution of salt marsh-tidal flat systems by dissipating hydrodynamics and stabilizing sediment, and the tidal channel can also influence the growth, expansion and erosion of the salt marsh patches. However, the interactions between saltmarsh patch expansion and tidal channel formation are complex and poorly understood. In the study, we established a two-dimensional biomorphodynamic model and introduced a dynamic vegetation module to simulate the spatial-temporal distribution of saltmarsh patches and the geomorphic evolution of the tidal channel system. We explored the two-way feedback between the spatial patterns of the tidal trench system and salt marsh vegetation patches with different initial numbers. Model results showed that the tidal channel extended rapidly to both sides of the sea and land at first, and then developed a large number of creeks, and the salt marsh patches expanded to the periphery and gradually formed a large patch. Besides, the presence of marsh patches can increase the density of tidal channels and promote the development of tidal channels. Further, the orientation of tidal channels was affected by the spatial distribution of marsh patches, which can divert water flow and induce the concentration of tidal flow. Specially, in the early stage of saltmarsh evolution, more tidal channels were formed by the interactions between hydrodynamics and sediment motion with the increase of marsh patch numbers, and in the later stage, the influence of salt marsh clusters gradually changed from promotion to stabilization. However, the expansion and the spatial distribution pattern of salt marsh patches was later limited by the formation of tidal channels reciprocally. Our study extended current understanding of the mechanisms underlying the co-evolution of marsh patches and tidal channels, and can provide scientific basis for future works on coastal protection and restoration.
-
表 1 模型参数汇总
Tab. 1 Summary of model parameters
模型参数 取值 单位 取值依据 水动力参数 无植被滩面曼宁系数n0 0.02 无量纲 Mariotti[33] 有植被滩面曼宁系数nB 0.08 无量纲 Mariotti[33] 潮差 4 m 江苏沿海实地资料 潮周期 12.5 h 江苏沿海实地资料 泥沙参数 沉积物密度 2650 kg/m3 Mariotti[33] 沉降速度 0.2 mm/s Mariotti[33] 临界起动切应力 0.2 N/m2 Mariotti[33] 临界沉降切应力 1 000 N/m2 Mariotti[33] 中值粒径D50 5 μm Mariotti[33] 植被参数 生长速度r 1 step−1 Best等[32] 最大植被密度承载力K 1 200 株/m2 Best等[32] 植被扩散系数D 0.5 m2/step Best等[32] 受潮流切应力影响的植被死亡系数Cτ 30 (株∙m−2)/( N∙m−2) Best等[32] 植被死亡临界切应力τcr,p 0.26 N/m2 Best等[32] 受淹没影响的植被死亡系数Cinund 2 000 (株∙m−2)/m Temmerman等[21] 植被临界淹没高度Hcr,p 0.1 m Temmerman等[21] -
[1] Amos C L. Chapter 10 siliciclastic tidal flats[J]. Developments in Sedimentology, 1995, 53: 273−306. [2] Friedrichs C T. Tidal flat morphodynamics: a synthesis[J]. Treatise on Estuarine and Coastal Science, 2011, 3: 137−170. [3] 时钟, Pye K, 陈吉余. 潮滩盐沼物理过程的研究进展综述[J]. 地球科学进展, 1995, 10(1): 19−30.Shi Zhong, Pye K, Chen Jiyu. Progress in physical processes on mudflat saltmarsh: an overview[J]. Advance in Earth Sciences, 1995, 10(1): 19−30. [4] Temmerman S, Meire P, Bouma T J, et al. Ecosystem-based coastal defence in the face of global change[J]. Nature, 2013, 504(7478): 79−83. doi: 10.1038/nature12859 [5] Leonardi N, Carnacina I, Donatelli C, et al. Dynamic interactions between coastal storms and salt marshes: a review[J]. Geomorphology, 2018, 301: 92−107. doi: 10.1016/j.geomorph.2017.11.001 [6] Leonard L A, Luther M E. Flow hydrodynamics in tidal marsh canopies[J]. Limnology and Oceanography, 1995, 40(8): 1474−1484. doi: 10.4319/lo.1995.40.8.1474 [7] 周曾, 陈雷, 林伟波, 等. 盐沼潮滩生物动力地貌演变研究进展[J]. 水科学进展, 2021, 32(3): 470−484.Zhou Zeng, Chen Lei, Lin Weibo, et al. Advances in biogeomorphology of tidal flat-saltmarsh systems[J]. Advances in Water Science, 2021, 32(3): 470−484. [8] 时钟, 杨世伦, 缪莘. 海岸盐沼泥沙过程现场实验研究[J]. 泥沙研究, 1998(4): 30−37.Shi Zhong, Yang Shilun, Miao Xin. Coastal saltmarsh sediment processes: a field experimental study[J]. Journal of Sediment Research, 1998(4): 30−37. [9] 高抒, 杜永芬, 谢文静, 等. 苏沪浙闽海岸互花米草盐沼的环境−生态动力过程研究进展[J]. 中国科学: 地球科学, 2014, 57(11): 2567−2586. doi: 10.1007/s11430-014-4954-9Gao Shu, Du Yongfen, Xie Wenjing, et al. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines[J]. Science China Earth Sciences, 2014, 57(11): 2567−2586. doi: 10.1007/s11430-014-4954-9 [10] 杨世伦, 时钟, 赵庆英. 长江口潮沼植物对动力沉积过程的影响[J]. 海洋学报, 2001, 23(4): 75−80.Yang Shilun, Shi Zhong, Zhao Qingying. Influence of tidal marsh vegetations on hydrodynamics and sedimentation in the Changjiang Estuary[J]. Haiyang Xuebao, 2001, 23(4): 75−80. [11] Leonard L A, Croft A L. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies[J]. Estuarine, Coastal and Shelf Science, 2006, 69(3/4): 325−336. [12] Shi J Z, Hamilton L J, Wolanski E. Near-bed currents and suspended sediment transport in saltmarsh canopies[J]. Journal of Coastal Research, 2000, 16(3): 909−914. [13] Evans B R, Möller I, Spencer T, et al. Dynamics of salt marsh margins are related to their three-dimensional functional form[J]. Earth Surface Processes and Landforms, 2019, 44(9): 1816−1827. [14] Allen J R L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12): 1155−1231. doi: 10.1016/S0277-3791(99)00034-7 [15] 吴德力, 沈永明, 方仁建. 江苏中部海岸潮沟的形态变化特征[J]. 地理学报, 2013, 68(7): 955−965.Wu Deli, Shen Yongming, Fang Renjian. A morphological analysis of tidal creek network patterns on the central Jiangsu coast[J]. Acta Geographica Sinica, 2013, 68(7): 955−965. [16] 沈永明, 张忍顺, 王艳红. 互花米草盐沼潮沟地貌特征[J]. 地理研究, 2003, 22(4): 520−527. doi: 10.3321/j.issn:1000-0585.2003.04.014Shen Yongming, Zhang Renshun, Wang Yanhong. The tidal creek character in salt marsh of Spartina alterniflora loisel on strong tide coast[J]. Geographical Research, 2003, 22(4): 520−527. doi: 10.3321/j.issn:1000-0585.2003.04.014 [17] De Vaate I B, Brückner M Z M, Kleinhans M G, et al. On the impact of salt marsh pioneer species-assemblages on the emergence of intertidal channel networks[J]. Water Resources Research, 2020, 56(3): e2019WR025942. [18] Schwarz C, Ye Qinghua, Van Der Wal D, et al. Impacts of salt marsh plants on tidal channel initiation and inheritance[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(2): 385−400. doi: 10.1002/2013JF002900 [19] 郑宗生, 周云轩, 田波, 等. 植被对潮沟发育影响的遥感研究——以崇明东滩为例[J]. 国土资源遥感, 2014, 26(3): 117−124.Zheng Zongsheng, Zhou Yunxuan, Tian Bo, et al. Effects of vegetation on the dynamic of tidal creeks based on quantitative satellite remote sensing: a case study of Dongtan in Chongming[J]. Remote Sensing for Land & Resources, 2014, 26(3): 117−124. [20] 刘露雨, 屈凡柱, 栗云召, 等. 黄河三角洲滨海湿地潮沟分布与植被覆盖度的关系[J]. 生态学杂志, 2020, 39(6): 1830−1837.Liu Luyu, Qu Fanzhu, Li Yunzhao, et al. Correlation between creek tidal distribution and vegetation coverage in the Yellow River Delta coastal wetland[J]. Chinese Journal of Ecology, 2020, 39(6): 1830−1837. [21] Temmerman S, Bouma T J, Van De Koppel J, et al. Vegetation causes channel erosion in a tidal landscape[J]. Geology, 2007, 35(7): 631−634. doi: 10.1130/G23502A.1 [22] Dai Weiqi, Li Huan, Zhou Zeng, et al. UAV photogrammetry for elevation monitoring of intertidal mudflats[J]. Journal of Coastal Research, 2018, 85(10085): 236−240. [23] 戴玮琦, 李欢, 龚政, 等. 无人机技术在潮滩地貌演变研究中的应用[J]. 水科学进展, 2019, 30(3): 359−372.Dai Weiqi, Li Huan, Gong Zheng, et al. Application of unmanned aerial vehicle technology in geomorphological evolution of tidal flat[J]. Advances in Water Science, 2019, 30(3): 359−372. [24] Dai Weiqi, Li Huan, Chen Xindi, et al. Saltmarsh expansion in response to morphodynamic evolution: field observations in the Jiangsu coast using UAV[J]. Journal of Coastal Research, 2020, 95(S1): 433−437. doi: 10.2112/SI95-084.1 [25] Symonds A M, Collins M B. The establishment and degeneration of a temporary creek system in response to managed coastal realignment: the Wash, UK[J]. Earth Surface Processes and Landforms, 2007, 32(12): 1783−1796. doi: 10.1002/esp.1495 [26] 尹延鸿. 潮沟研究现状及进展[J]. 海洋地质动态, 1997(7): 1−4.Yin Yanhong. Status quo and progress in tidal channel[J]. Marine Geology Letters, 1997(7): 1−4. [27] 侯明行, 刘红玉, 张华兵. 盐城淤泥质潮滩湿地潮沟发育及其对米草扩张的影响[J]. 生态学报, 2014, 34(2): 400−409.Hou Mingxing, Liu Hongyu, Zhang Huabing. Effection of tidal creek system on the expansion of the invasive Spartina in the coastal wetland of Yancheng[J]. Acta Ecologica Sinica, 2014, 34(2): 400−409. [28] 崔保山, 蔡燕子, 谢湉, 等. 湿地水文连通的生态效应研究进展及发展趋势[J]. 北京师范大学学报(自然科学版), 2016, 52(6): 738−746.Cui Baoshan, Cai Yanzi, Xie Tian, et al. Ecological effects of wetland hydrological connectivity: problems and prospects[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(6): 738−746. [29] Leal L C, Andersen A N, Leal I R. Anthropogenic disturbance reduces seed-dispersal services for myrmecochorous plants in the Brazilian Caatinga[J]. Oecologia, 2014, 174(1): 173−181. doi: 10.1007/s00442-013-2740-6 [30] Moffett K B, Gorelick S M. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences[J]. Water Resources Research, 2016, 52(3): 1729−1745. doi: 10.1002/2015WR017406 [31] 王青, 骆梦, 邱冬冬, 等. 滨海盐沼水文特征对盐地碱蓬定植过程的影响[J]. 自然资源学报, 2019, 34(12): 2569−2579. doi: 10.31497/zrzyxb.20191207Wang Qing, Luo Meng, Qiu Dongdong, et al. Effect of hydrological characteristics on the recruitment of Suaeda salsa in coastal salt marshes[J]. Journal of Natural Resources, 2019, 34(12): 2569−2579. doi: 10.31497/zrzyxb.20191207 [32] Best Ü S N, van der Wegen M, Dijkstra J, et al. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics[J]. Environmental Modelling & Software, 2018, 109: 152−166. [33] Mariotti G. Beyond marsh drowning: the many faces of marsh loss (and gain)[J]. Advances in Water Resources, 2020, 144: 103710. doi: 10.1016/j.advwatres.2020.103710 [34] Mariotti G, Murshid S. A 2D tide-averaged model for the long-term evolution of an idealized tidal basin-inlet-delta system[J]. Journal of Marine Science and Engineering, 2018, 6(4): 154. doi: 10.3390/jmse6040154 [35] Mariotti G. Revisiting salt marsh resilience to sea level rise: are ponds responsible for permanent land loss?[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(7): 1391−1407. doi: 10.1002/2016JF003900 [36] Mariotti G. Marsh channel morphological response to sea level rise and sediment supply[J]. Estuarine, Coastal and Shelf Science, 2018, 209: 89−101. doi: 10.1016/j.ecss.2018.05.016 [37] Rinaldo A, Fagherazzi S, Lanzoni S, et al. Tidal networks: 3. Landscape-forming discharges and studies in empirical geomorphic relationships[J]. Water Resources Research, 1999, 35(12): 3919−3929. doi: 10.1029/1999WR900238 [38] Di Silvio G, Dall’Angelo C, Bonaldo D, et al. Long-term model of planimetric and bathymetric evolution of a tidal lagoon[J]. Continental Shelf Research, 2010, 30(8): 894−903. doi: 10.1016/j.csr.2009.09.010 [39] Arons A B, Stommel H. A mixing-length theory of tidal flushing[J]. EOS, Transactions American Geophysical Union, 1951, 32(3): 419−421. doi: 10.1029/TR032i003p00419 [40] Monden M. Modeling the interaction between morphodynamics and vegetation in the Nisqually River Estuary, 2010[D]. Delft, Netherlands: Delft University of Technology, 2010. [41] Carr J, Mariotti G, Fahgerazzi S, et al. Exploring the impacts of seagrass on coupled marsh-tidal flat morphodynamics[J]. Frontiers in Environmental Science, 2018, 6: 92. doi: 10.3389/fenvs.2018.00092 [42] 张长宽, 黄婷婷, 陶建峰, 等. 江苏海岸潮滩剖面形态与动力泥沙响应关系[J]. 河海大学学报(自然科学版), 2020, 48(3): 245−251.Zhang Changkuan, Huang Tingting, Tao Jianfeng, et al. Response relationship of tidal flat profile and dynamic sediment along Jiangsu coast[J]. Journal of Hohai University (Natural Sciences), 2020, 48(3): 245−251. [43] Balke T, Bouma T J, Horstman E M, et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats[J]. Marine Ecology Progress Series, 2011, 440: 1−9. doi: 10.3354/meps09364 [44] Hu Zhongjian, Ge Zhenming, Ma Qiang, et al. Revegetation of a native species in a newly formed tidal marsh under varying hydrological conditions and planting densities in the Yangtze Estuary[J]. Ecological Engineering, 2015, 83: 354−363. doi: 10.1016/j.ecoleng.2015.07.005 [45] Poppema D W, Willemsen P W J M, De Vries M B, et al. Experiment-supported modelling of salt marsh establishment[J]. Ocean & Coastal Management, 2019, 168: 238−250. [46] Hu Z, Van Belzen J, Van Der Wal D, et al. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: the importance of temporal and spatial variability in hydrodynamic forcing[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(7): 1450−1469. doi: 10.1002/2014JG002870 [47] 张晓祥, 王伟玮, 严长清, 等. 南宋以来江苏海岸带历史海岸线时空演变研究[J]. 地理科学, 2014, 34(3): 344−351.Zhang Xiaoxiang, Wang Weiwei, Yan Changqing, et al. Historical coastline spatio-temporal evolution analysis in Jiangsu coastal area during the past 1 000 years[J]. Scientia Geographica Sinica, 2014, 34(3): 344−351. [48] 王文昊, 高抒, 徐杨佩云, 等. 江苏中部海岸潮滩沉积速率特征值的数值实验分析[J]. 南京大学学报(自然科学), 2014, 50(5): 656−665.Wang Wenhao, Gao Shu, Xu Yangpeiyun, et al. Numerical experiments for the characteristic deposition rates over the tidal flat, central Jiangsu coast[J]. Journal of Nanjing University (Natural Sciences), 2014, 50(5): 656−665. [49] 丁海燕. 盐城海岸线30年变迁及海岸带可持续发展路径[J]. 盐城师范学院学报(人文社会科学版), 2021, 41(4): 11−20.Ding Haiyan. Coastline change in the past 30 years and sustainable development path of coastal zone in Yancheng[J]. Journal of Yancheng Teachers University (Humanities & Social Sciences Edition), 2021, 41(4): 11−20. [50] Fagherazzi S, Kirwan M L, Mudd S M, et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors[J]. Reviews of Geophysics, 2012, 50(1): RG1002. [51] Fagherazzi S, Sun Tao. A stochastic model for the formation of channel networks in tidal marshes[J]. Geophysical Research Letters, 2004, 31(21): L21503. [52] Marani M, Belluco E, Ferrari S, et al. Analysis, synthesis and modelling of high-resolution observations of salt-marsh eco-geomorphological patterns in the Venice lagoon[J]. Estuarine, Coastal and Shelf Science, 2006, 69(3/4): 414−426. [53] Geng Liang, Gong Zheng, Lanzoni S, et al. A new method for automatic definition of tidal creek networks[J]. Journal of Coastal Research, 2018, 85(S1): 156−160. [54] Silvestri S, Defina A, Marani M. Tidal regime, salinity and salt marsh plant zonation[J]. Estuarine, Coastal and Shelf Science, 2005, 62(1/2): 119−130. [55] Coco G, Zhou Zeng, Van Maanen B, et al. Morphodynamics of tidal networks: advances and challenges[J]. Marine Geology, 2013, 346: 1−16. doi: 10.1016/j.margeo.2013.08.005 [56] Wang Chen, Temmerman S. Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states?: An empirical study on intertidal flats and marshes[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(1): 229−240. doi: 10.1029/2012JF002474 [57] Taramelli A, Valentini E, Cornacchia L, et al. Indications of dynamic effects on scaling relationships between channel sinuosity and vegetation patch size across a salt marsh platform[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(10): 2714−2731. doi: 10.1029/2017JF004540 -