留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的GF-1卫星WFV影像赤潮探测方法

崔宾阁 杨光 方喜 刘荣杰

崔宾阁,杨光,方喜,等. 基于深度学习的GF-1卫星WFV影像赤潮探测方法[J]. 海洋学报,2023,45(7):147–157 doi: 10.12284/hyxb2023070
引用本文: 崔宾阁,杨光,方喜,等. 基于深度学习的GF-1卫星WFV影像赤潮探测方法[J]. 海洋学报,2023,45(7):147–157 doi: 10.12284/hyxb2023070
Cui Bin’ge,Yang Guang,Fang Xi, et al. Red tide detection using GF-1 WFV image based on deep learning method[J]. Haiyang Xuebao,2023, 45(7):147–157 doi: 10.12284/hyxb2023070
Citation: Cui Bin’ge,Yang Guang,Fang Xi, et al. Red tide detection using GF-1 WFV image based on deep learning method[J]. Haiyang Xuebao,2023, 45(7):147–157 doi: 10.12284/hyxb2023070

基于深度学习的GF-1卫星WFV影像赤潮探测方法

doi: 10.12284/hyxb2023070
基金项目: 国家自然科学基金重大项目(61890964);中韩海洋科学共同研究中心项目(PI-2022-1)。
详细信息
    作者简介:

    崔宾阁(1979-),男,教授,现从事高光谱遥感、海洋和海岸带遥感监测技术研究。E-mail:cuibinge@sdust.edu.cn

    通讯作者:

    刘荣杰(1981-),男,副研究员,主要从事自主卫星数据处理、水体光学遥感研究。E-mail: liurj@fio.org.cn

  • 中图分类号: TP751; P714+.5

Red tide detection using GF-1 WFV image based on deep learning method

  • 摘要: 赤潮是我国主要的海洋生态灾害,有效监测赤潮的发生和空间分布对于赤潮的防治具有重要意义。传统的赤潮监测以低空间分辨率的水色卫星为主,但是其对于频发的小规模赤潮存在监控盲区。GF-1卫星WFV影像具有空间分辨率高、成像幅宽大和重访周期短等优点,在小规模赤潮监测中表现出较大的潜力。然而,GF-1卫星WFV影像的光谱分辨率较低,波段少,传统面向水色卫星的赤潮探测方法无法应用于GF-1卫星WFV数据。而且赤潮具有形态多变、尺度不一的特点,难以精确提取。基于此,本文提出了一种面向GF-1卫星WFV影像的尺度自适应赤潮探测网络(SARTNet)。该网络采用双层主干结构以融合赤潮水体的形状特征与细节特征,并引入注意力机制挖掘不同尺度赤潮特征之间的相关性,提高网络对复杂分布赤潮的探测能力。实验结果表明,SARTNet赤潮探测精度优于现有方法,F1分数达到0.89以上,对不同尺度的赤潮漏提和误提较少,且受环境因素的影响较小。
  • 图  1  研究区域

    Fig.  1  Study area

    图  2  研究区I赤潮GF-1 WFV影像

    Fig.  2  GF-1 WFV images of the location of study area I and red tides

    图  3  研究区II赤潮GF-1 WFV影像

    Fig.  3  GF-1 WFV images of the location of study area II and red tides

    图  4  测试图像及其真值图

    Fig.  4  Test images and its ground truth map

    图  5  SARTNet总体架构

    HW分别代表特征图的高度和宽度

    Fig.  5  SARTNet overall architecture

    H and W represent the height and width of feature map, respectively

    图  6  ASE模块结构

    Fig.  6  ASE module structure

    图  7  模型损失曲线

    Fig.  7  Model loss curve

    图  8  赤潮信息提取的定性结果

    黄色矩形框表示明显的漏提或误提区域

    Fig.  8  Qualitative results of red tide information extraction

    The yellow rectangular box indicates obvious missed extraction or false extraction areas

    图  9  ASE模块输出特征图

    Fig.  9  ASE module output feature map

    图  10  多层次主干输出的定性结果

    Fig.  10  Qualitative results of multilayer backbone outputs

    图  11  赤潮水体和非赤潮水体的光谱曲线

    Fig.  11  Spectral curves of red tide water and normal water

    图  12  输入不同数据的定性结果

    Fig.  12  Qualitative results of experiments with different band settings

    图  13  赤潮探测模型适用性分析结果

    Fig.  13  Applicability analysis results of red ride detection model

    表  1  GF-1 WFV影像参数

    Tab.  1  GF-1 WFV image parameters

    参数 多光谱宽幅相机
    波长范围 0.45~0.52 μm
    0.52~0.59 μm
    0.63~0.69 μm
    0.77~0.89 μm
    空间分辨率 16 m
    幅宽 800 km
    重访周期 2 d
    下载: 导出CSV

    表  2  不同方法赤潮信息提取的定量结果

    Tab.  2  Quantitative results of red tide information extraction by different methods

    方法 精确率/% 召回率/% F1分数 参数量/M
    研究区I GF1_RI 67.64 80.77 0.73
    U-Net 84.32 91.32 0.87 31.02
    PSPNet 91.94 83.62 0.87 23.60
    DeepLabv3+ 88.41 85.41 0.86 12.04
    SARTNet 88.81 90.87 0.89 5.01
    研究区II GF1_RI 79.48 60.40 0.68
    U-Net 78.80 80.47 0.79 31.02
    PSPNet 84.01 83.91 0.83 23.60
    DeepLabv3+ 87.01 81.82 0.84 12.04
    SARTNet 91.09 87.29 0.89 5.01
    注:加粗数据代表同列数据最大值。
    下载: 导出CSV

    表  3  ASE模块消融实验结果

    Tab.  3  ASE module ablation experimental results

    ASE 精确率/% 召回率/% F1分数
    88.89 86.50 0.87
    90.01 89.08 0.89
    下载: 导出CSV

    表  4  不同层次主干对赤潮信息提取的定量结果

    Tab.  4  Quantitative results of red tide information extraction at different levels

    主干层次 精确率/% 召回率/% F1分数
    SARTNet-1 91.79 85.44 0.88
    SARTNet-2 90.01 89.08 0.89
    SARTNet-3 88.49 88.50 0.88
    下载: 导出CSV

    表  5  输入不同数据的定量结果

    Tab.  5  Quantitative results of experiments with different band settings

    波段设置 精确率/% 召回率/% F1分数
    4波段 88.81 90.87 0.89
    4波段+NDVI 87.08 60.45 0.71
    4波段+GF1_RI 87.54 91.65 0.89
    4波段+GF1_RI+NDVI 87.17 67.91 0.76
    下载: 导出CSV

    表  6  模型适用性分析实验结果

    Tab.  6  Experimental results of model applicability analysis

    影像 精确率/% 召回率/% F1分数
    GF-1 WFV3影像 91.37 86.70 0.89
    GF-1 WFV4影像 89.16 87.05 0.88
    下载: 导出CSV
  • [1] 伍玉梅, 王芮, 程田飞, 等. 基于卫星遥感的赤潮信息提取研究进展[J]. 渔业信息与战略, 2019, 34(3): 214−220. doi: 10.13233/j.cnki.fishis.2019.03.009

    Wu Yumei, Wang Rui, Cheng Tianfei, et al. Progress in retrieval of red tide from satellite data[J]. Fishery Information & Strategy, 2019, 34(3): 214−220. doi: 10.13233/j.cnki.fishis.2019.03.009
    [2] 翟伟康, 许自舟, 张健. 河北省近岸海域赤潮灾害特征分析[J]. 海洋环境科学, 2016, 35(2): 243−246, 251. doi: 10.13634/j.cnki.mes.2016.02.015

    Zhai Weikang, Xu Zizhou, Zhang Jian. Analysis on characteristics of red tide disaster in Hebei coastal waters[J]. Marine Environmental Science, 2016, 35(2): 243−246, 251. doi: 10.13634/j.cnki.mes.2016.02.015
    [3] 姜德娟, 王昆, 夏云. 渤海赤潮遥感监测方法比较研究[J]. 海洋环境科学, 2020, 39(3): 460−467. doi: 10.12111/j.mes20200321

    Jiang Dejuan, Wang Kun, Xia Yun. Comparative studies on remote sensing techniques for red tide monitoring in Bohai Sea[J]. Marine Environmental Science, 2020, 39(3): 460−467. doi: 10.12111/j.mes20200321
    [4] 郝艳玲, 曹文熙, 崔廷伟, 等. 基于半分析算法的赤潮水体固有光学性质反演[J]. 海洋学报, 2011, 33(1): 52−65.

    Hao Yanling, Cao Wenxi, Cui Tingwei, et al. The retrieval of oceanic inherent optical properties based on semianalytical algorithm during the red ride[J]. Haiyang Xuebao, 2011, 33(1): 52−65.
    [5] 毛显谋, 黄韦艮. 多波段卫星遥感海洋赤潮水华的方法研究[J]. 应用生态学报, 2003, 14(7): 1200−1202. doi: 10.3321/j.issn:1001-9332.2003.07.037

    Mao Xianmou, Huang Weigen. Algorithms of multiband remote sensing for coastal red tide waters[J]. Chinese Journal of Applied Ecology, 2003, 14(7): 1200−1202. doi: 10.3321/j.issn:1001-9332.2003.07.037
    [6] 王其茂, 马超飞, 唐军武, 等. EOS/MODIS遥感资料探测海洋赤潮信息方法[J]. 遥感技术与应用, 2006, 21(1): 6−10. doi: 10.3969/j.issn.1004-0323.2006.01.002

    Wang Qimao, Ma Chaofei, Tang Junwu, et al. A method for detecting red tide information using EOS/MODIS data[J]. Remote Sensing Technology and Application, 2006, 21(1): 6−10. doi: 10.3969/j.issn.1004-0323.2006.01.002
    [7] Ahn Y H, Shanmugam P. Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters[J]. Remote Sensing of Environment, 2006, 103(4): 419−437. doi: 10.1016/j.rse.2006.04.007
    [8] Caballero I, Fernández R, Escalante O M, et al. New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters[J]. Scientific Reports, 2020, 10(1): 8743. doi: 10.1038/s41598-020-65600-1
    [9] Khalili M H, Hasanlou M. Harmful algal blooms monitoring using SENTINEL-2 satellite images[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Karaj, Iran: ISPRS, 2019: 609−613.
    [10] Xing Qianguo, Guo Ruihong, Wu Lingling, et al. High-resolution satellite observations of a new hazard of golden tides caused by floating sargassum in winter in the Yellow Sea[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1815−1819. doi: 10.1109/LGRS.2017.2737079
    [11] Yunus A P, Dou Jie, Sravanthi N. Remote sensing of chlorophyll-a as a measure of red tide in Tokyo Bay using hotspot analysis[J]. Remote Sensing Applications: Society and Environment, 2015, 2: 11−25. doi: 10.1016/j.rsase.2015.09.002
    [12] Rahman A F, Aslan A. Detecting red tide using spectral shapes[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE, 2016: 5856−5859.
    [13] Liu Rongjie, Zhang Jie, Cui Binge, et al. Red tide detection based on high spatial resolution broad band satellite data: a case study of GF-1[J]. Journal of Coastal Research, 2019, 90(SI): 120−128.
    [14] Liu Rongjie, Xiao Yanfang, Ma Yi, et al. Red tide detection based on high spatial resolution broad band optical satellite data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 131−147. doi: 10.1016/j.isprsjprs.2021.12.009
    [15] 刘岳明, 杨晓梅, 王志华, 等. 基于深度学习RCF模型的三都澳筏式养殖区提取研究[J]. 海洋学报, 2019, 41(4): 119−130.

    Liu Yueming, Yang Xiaomei, Wang Zhihua, et al. Extracting raft aquaculture areas in Sanduao from high-resolution remote sensing images using RCF[J]. Haiyang Xuebao, 2019, 41(4): 119−130.
    [16] 崔艳荣, 邹斌, 韩震, 等. 卷积神经网络在卫星遥感海冰图像分类中的应用探究——以渤海海冰为例[J]. 海洋学报, 2020, 42(9): 100−109.

    Cui Yanrong, Zou Bin, Han Zhen, et al. Application of convolutional neural networks in satellite remote sensing sea ice image classification: a case study of sea ice in the Bohai Sea[J]. Haiyang Xuebao, 2020, 42(9): 100−109.
    [17] 徐知宇, 周艺, 王世新, 等. 面向GF-2遥感影像的U-Net城市绿地分类[J]. 中国图象图形学报, 2021, 26(3): 700−713. doi: 10.11834/jig.200052

    Xu Zhiyu, Zhou Yi, Wang Shixin, et al. U-Net for urban green space classification in Gaofen-2 remote sensing images[J]. Journal of Image and Graphics, 2021, 26(3): 700−713. doi: 10.11834/jig.200052
    [18] 姜宗辰, 马毅, 江涛, 等. 基于深度置信网络(DBN)的赤潮高光谱遥感提取研究[J]. 海洋技术学报, 2019, 38(2): 1−7.

    Jiang Zongchen, Ma Yi, Jiang Tao, et al. Research on the extraction of red tide hyperspectral remote sensing based on the deep belief network (DBN)[J]. Journal of Ocean Technology, 2019, 38(2): 1−7.
    [19] 李敬虎, 邢前国, 郑向阳, 等. 基于深度学习的无人机影像夜光藻赤潮提取方法[J]. 计算机应用, 2022, 42(9): 2969−2974.

    Li Jinghu, Xing Qianguo, Zheng Xiangyang, et al. Noctiluca scintillans red tide extraction method from UAV images based on deep learning[J]. Journal of Computer Applications, 2022, 42(9): 2969−2974.
    [20] Lee H, Kwon H, Kim W. Generating hard examples for pixel-wise classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9504−9517. doi: 10.1109/JSTARS.2021.3112924
    [21] Zhao Xin, Liu Rongjie, Ma Yi, et al. Red tide detection method for HY-1D coastal zone imager based on U-net convolutional neural network[J]. Remote Sensing, 2022, 14(1): 88.
    [22] 刘锟, 付晶莹, 李飞. 高分一号卫星4种融合方法评价[J]. 遥感技术与应用, 2015, 30(5): 980−986.

    Liu Kun, Fu Jingying, Li Fei. Evaluation study of four fusion methods of GF-1 PAN and multi-spectral images[J]. Remote Sensing Technology and Application, 2015, 30(5): 980−986.
    [23] 王蕊, 王常颖, 李劲华. 基于数据挖掘的GF-1遥感影像绿潮自适应阈值分区智能检测方法研究[J]. 海洋学报, 2019, 41(4): 131−144.

    Wang Rui, Wang Changying, Li Jinhua. An intelligent divisional green tide detection of adaptive threshold for GF-1 image based on data mining[J]. Haiyang Xuebao, 2019, 41(4): 131−144.
    [24] 张海龙, 孙德勇, 李俊生, 等. 基于GF1-WFV和HJ-CCD数据的我国近海绿潮遥感监测算法研究[J]. 光学学报, 2016, 36(6): 0601004. doi: 10.3788/AOS201636.0601004

    Zhang Hailong, Sun Deyong, Li Junsheng, et al. Remote sensing algorithm for detecting green tide in China coastal waters based on GF1-WFV and HJ-CCD data[J]. Acta Optica Sinica, 2016, 36(6): 0601004. doi: 10.3788/AOS201636.0601004
    [25] 程益锋, 黄文骞, 吴迪, 等. 基于高分一号卫星影像的珊瑚岛礁分类方法[J]. 海洋测绘, 2018, 38(6): 49−53. doi: 10.3969/j.issn.1671-3044.2018.06.012

    Cheng Yifeng, Huang Wenqian, Wu Di, et al. Coral reefs classification methods based on GF-1 satellite image[J]. Hydrographic Surveying and Charting, 2018, 38(6): 49−53. doi: 10.3969/j.issn.1671-3044.2018.06.012
    [26] 邝辉宇, 吴俊君. 基于深度学习的图像语义分割技术研究综述[J]. 计算机工程与应用, 2019, 55(19): 12−21. doi: 10.3778/j.issn.1002-8331.1905-0325

    Kuang Huiyu, Wu Junjun. Survey of image semantic segmentation based on deep learning[J]. Computer Engineering and Applications, 2019, 55(19): 12−21. doi: 10.3778/j.issn.1002-8331.1905-0325
    [27] Li Hanchao, Xiong Pengfei, Fan Haoqiang, et al. DFANet: deep feature aggregation for real-time semantic segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9522−9531.
    [28] Newell A, Yang Kaiyu, Deng Jia. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 483−499.
    [29] Mao Xiaojiao, Shen Chunhua, Yang Yubin. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: Curran Associates Inc. , 2016: 2810−2818.
    [30] Zhou Feng, Hu Yong, Shen Xukun. Scale-aware spatial pyramid pooling with both encoder-mask and scale-attention for semantic segmentation[J]. Neurocomputing, 2020, 383: 174−182. doi: 10.1016/j.neucom.2019.11.042
    [31] Zhao Hengshuang, Shi Jianping, Qi Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2881−2890.
    [32] Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132−7141.
    [33] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
    [34] Chen L C, Zhu Yukun, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 833−851.
    [35] Rouse J W Jr, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[R]. College Station, TX, United States: NASA, 1974.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  610
  • HTML全文浏览量:  256
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-30
  • 修回日期:  2022-12-05
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回