Sea ice identification based on CFOSAT scatterometer
-
摘要: 中法海洋卫星散射计(CSCAT)丰富的观测几何信息为极地海冰遥感提供了新的机遇。本文提出一种适用于CSCAT的贝叶斯海冰识别算法,不需要构建海冰地球物理模式函数和计算后向散射系数离海冰地球物理模型函数(GMF)的距离,仅利用海面风场反演伴随的最小残差即可构建CSCAT海冰识别模型。研究结果与欧洲气象卫星组织的海冰边缘线产品进行了比较,表明2021年9月南极和北极区域逐日的海冰覆盖面积估计标准差分别为1%和7%,与其他卫星散射计的海冰识别结果基本一致。这种新的海冰识别方法具有模型参数少、处理速度快、检测结果可靠的优点,对卫星地面系统的业务化处理具有重要的借鉴意义。Abstract: The scatterometer onboard China-France Oceanography Satellite (CFOSAT) observes sea surface with abundant viewing geometries, opening up new opportunities for sea ice detection. This paper proposes a Bayesian sea ice detection method for the CFOSAT satellite scatterometer (CSCAT), which only uses the minimal inversion residual derived from the wind inversion procedure, hence it does not need to develop a sea ice geophysical model function (GMF) and to calculate the distance between CSCAT backscatters and sea ice GMF. The results are compared with the sea ice edge data from European Organisation for the Exploitation of Meteorological Satellites, which shows that the normalized standard deviation error of CSCAT daily sea ice extent is about 1% and 7% in the Antarctic and the Arctic, respectively, agreeing well with the prior scatterometers. In summary, the proposed method is advanced in terms of model input parameters, processing speed and detection accuracy, so it is of great significance to the operational ice detection in the satellite ground segment.
-
图 2 中法海洋卫星散射计垂直极化σ0(dB)的二维等值线图
a. 南极海域,海水表面;b. 南极海域,稀疏冰面;c. 南极海域,密集冰面;d. 北极海域,海水表面;e. 北极海域,稀疏冰面;f. 北极海域,密集冰面
Fig. 2 Two-dimensional contour plots of CSCAT vertically-polarized σ0 (dB)
a. Antarctic, open water; b. Antarctic, open ice; c. Antarctic, close ice; d. Arctic, open water; e. Arctic, open ice; f. Arctic, close ice
-
[1] Liu Zheng, Schweiger A. Low-level and surface wind jets near sea ice edge in the Beaufort Sea in late autumn[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(13): 6873−6891. doi: 10.1029/2018JD029770 [2] Wu Lichuan. Effect of atmosphere-wave-ocean/ice interactions on a polar low simulation over the Barents Sea[J]. Atmospheric Research, 2021, 248: 105183. doi: 10.1016/j.atmosres.2020.105183 [3] Cohen J, Screen J A, Furtado J C, et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014, 7: 627−637. doi: 10.1038/ngeo2234 [4] Parkinson C L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14414−14423. doi: 10.1073/pnas.1906556116 [5] 李彦青. 渤海海冰可见光遥感数据的反演、同化和候平均时间序列的构建分析[D]. 青岛: 中国海洋大学, 2013.Li Yanqing. The retrieval, assimilation, pentadly averaged time series building and analysis of sea ice in the Bohai Sea using the visible remote sensing data[D]. Qingdao: Ocean University of China, 2013. [6] 石立坚, 王其茂, 邹斌, 等. 利用海洋(HY-2)卫星微波辐射计数据反演北极区域海冰密集度[J]. 极地研究, 2014, 26(4): 410−417. doi: 10.13679/j.jdyj.2014.4.410Shi Lijian, Wang Qimao, Zou Bin, et al. Arctic sea ice concentration retrieval using HY-2 radiometer data[J]. Chinese Journal of Polar Research, 2014, 26(4): 410−417. doi: 10.13679/j.jdyj.2014.4.410 [7] Johansson A M, Brekke C, Spreen G, et al. X-, C-, and L-band SAR signatures of newly formed sea ice in Arctic leads during winter and spring[J]. Remote Sensing of Environment, 2018, 204: 162−180. doi: 10.1016/j.rse.2017.10.032 [8] Cartwright J, Fraser A D, Porter-Smith R. Polar maps of C-band backscatter parameters from the Advanced Scatterometer[J]. Earth System Science Data, 2022, 14(2): 479−490. doi: 10.5194/essd-14-479-2022 [9] Long D G, Hardin P J, Whiting P T. Resolution enhancement of spaceborne scatterometer data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(3): 700−715. doi: 10.1109/36.225536 [10] Remund Q P, Long D G. Sea ice extent mapping using Ku band scatterometer data[J]. Journal of Geophysical Research: Oceans, 1999, 104(C5): 11515−11527. doi: 10.1029/98JC02373 [11] Remund Q P, Long D G. Sea ice mapping algorithm for QuikScat and seawinds[C]//IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No. 98CH36174). Seattle: IEEE, 1998: 1686−1688. [12] Rivas M B, Stoffelen A. New Bayesian algorithm for sea ice detection with QuikSCAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 1894−1901. doi: 10.1109/TGRS.2010.2101608 [13] Rivas M B, Verspeek J, Verhoef A, et al. Bayesian sea ice detection with the advanced scatterometer ASCAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2649−2657. doi: 10.1109/TGRS.2011.2182356 [14] 赵朝方, 徐锐, 赵可. 基于HY-2A/SCAT数据极地海冰检测方法研究[J]. 中国海洋大学学报(自然科学版), 2019, 49(10): 140−149. doi: 10.16441/j.cnki.hdxb.20190275Zhao Chaofang, Xu Rui, Zhao Ke. Research of Polar sea ice detection methods based on HY-2A/SCAT[J]. Periodical of Ocean University of China, 2019, 49(10): 140−149. doi: 10.16441/j.cnki.hdxb.20190275 [15] Zhai Xiaochun, Wang Zhixiong, Zheng Zhaojun, et al. Sea ice monitoring with CFOSAT scatterometer measurements using random forest classifier[J]. Remote Sensing, 2021, 13(22): 4686. doi: 10.3390/rs13224686 [16] Zou Juhong, Zeng Tao, Guo Maohua, et al. The study on an Antarctic sea ice identification algorithm of the HY-2A microwave scatterometer data[J]. Acta Oceanologica Sinica, 2016, 35(9): 74−79. doi: 10.1007/s13131-016-0927-5 [17] Lin Wenming, Dong Xiaolong, Portabella M, et al. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 627−639. doi: 10.1109/TGRS.2018.2858852