Storm modeling of 1991−2020 tropical cyclones in the Bay of Bengal and the timing of the head-bay maximum surge
-
摘要: 研究风暴潮期间的增水过程、振幅和时相特征对提高风暴潮实时预报的精度和减轻灾害损失具有重要价值。采用径流、潮汐、风、波浪耦合模型模拟了孟加拉湾1991−2020年期间对湾顶布里斯瓦尔河口一带增水影响最大的28次热带气旋过程。结果显示,由风暴潮总水位减去天文潮位得到的总增水极值相对于天文潮高潮位的出现时刻集中于涨潮阶段,占总次数的89.3%,并且集中于高潮位前的3 h和4 h。增水过程呈现“(准)孤立波”和“(准)周期性振动”两大类型,其中孤立波形式的增水过程有的在涨潮阶段便完成,也有的持续一个完整的涨、落潮阶段。风暴潮增水−天文潮相互作用曲线具有与天文潮同样周期的振动特征,其振幅与潮差的大小相关,呈现出“涨峰−落谷”与“涨谷−落峰”两种类型,二者具有180°的相位差。热带气旋的行进方向与潮流同逆向、登陆时的潮相、海岸陷波(边缘波)的形成与传播等是决定总增水极值时相特征的主要动力机制。Abstract: The surge process, magnitude and timing are of critical importance for accurate storm prediction and warning as well as hazard mitigation. A total of 28 tropical cyclones that most affected the head Bay of Bengal during 1991−2020 are selected and simulated with interactive forces including wind, tide, wave and river discharge. The occurrence frequencies of the maximum surge cluster in the rising tide, amounting to 89.3%, mostly 3 h and 4 h before the peak tide. The larger maximum surges are associated with phase shift of storm tide from astronomical tide. The surge processes can be classified into “(quasi-) solitary wave” and “(quasi-) periodic” oscillations. The solitary-wave-like surge may last only the rising tide or both the rising tide and the falling tide. The non-linear interactions between the storm surge and astronomical tide have the same period of a semi-diurnal tide, and their amplitudes are controlled by tidal range. The surge-tide interaction curves demonstrate two types: one is “peak in rising tide and trough in falling tide”, the other is the opposite. They are 180°out of phase, i.e. 6 h for a semi-diurnal tide. The advancing direction of cyclones relative to tidal current, the tidal phase at a cyclone landfall and the formation & propagation of trapped edge surge waves are the dominant mechanism to determine the timing of maximum surges.
-
Key words:
- Bay of Bengal /
- storm surge /
- FVCOM /
- maximum surge /
- timing /
- tide-surge interaction /
- edge wave
-
图 4 孟加拉湾湾顶赫普帕拉验潮站1987−2000年观测的总增水极值时刻(a)与数值模拟的布里斯瓦尔河口1991−2020年热带气旋总增水极值时刻(b)频率分布
0时刻表示天文潮高潮位,负值表示涨潮阶段,正值表示落潮阶段
Fig. 4 Occurrence frequencies of maximum total surges before peak tide of observed data (1987−2000) at the Khepupara gauge station (a) and of the modeled 1991−2020 cyclones at the Buriswar Estuary (b)
Note 0 h represents the peak tide, negative hrs are for rising tide while positive hrs are for falling tide
-
[1] Proudman J. Oscillations of tide and surge in an estuary of finite length[J]. Journal of Fluid Mechanics, 1957, 2(4): 371−382. doi: 10.1017/S002211205700018X [2] Rossiter J R. Interaction between tide and surge in the Thames[J]. Geophysical Journal of the Royal Astronomical Society, 1961, 6(1): 29−53. doi: 10.1111/j.1365-246X.1961.tb02960.x [3] Prandle D, Wolf J. The interaction of surge and tide in the North Sea and River Thames[J]. Geophysical Journal International, 1978, 55(1): 203−216. doi: 10.1111/j.1365-246X.1978.tb04758.x [4] 高焕臣. 风暴潮与天文潮非线性相互作用结果及有关问题的分析[J]. 海洋通报, 1994, 13(2): 19−23.Gao Huanchen. Non-linear interaction between storm surge and astronomical tide[J]. Marine Science Bulletin, 1994, 13(2): 19−23. [5] Horsburgh K J, Wilson C. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea[J]. Journal of Geophysical Research, 2007, 112(C8): C08003. [6] Bernier N B, Thompson K R. Tide-surge interaction off the east coast of Canada and northeastern United States[J]. Journal of Geophysical Research: Oceans, 2007, 112(C6): C06008. [7] Zhang Heng, Cheng Weicong, Qiu Xixi, et al. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea[J]. Continental Shelf Research, 2017, 142: 32−49. doi: 10.1016/j.csr.2017.05.015 [8] Feng Jianlong, Jiang Wensheng, Li Delei, et al. Characteristics of tide-surge interaction and its roles in the distribution of surge residuals along the coast of China[J]. Journal of Oceanography, 2019, 75(3): 225−234. doi: 10.1007/s10872-018-0495-8 [9] 杨万康. 典型海湾风暴潮的非线性与共振效应及其危险性评估研究[D]. 青岛: 中国科学院大学, 2019.Yang Wankang. Study on nonlinear and resonance effects and risk assessment of storm surge in typical bay[D]. Qingdao: University of Chinese Academy of Sciences, 2019. [10] 白一冰, 石景元, 路川藤, 等. “烟花”台风影响下长江南通以下河段的增水分布特征[J]. 水利水运工程学报, 2021(6): 25−33.Bai Yibing, Shi Jingyuan, Lu Chuanteng, et al. Spatio-temporal distribution characteristics of surge in the reach below Nantong of Yangtze Estuary under the influence of Typhoon In-Fa[J]. Hydro-Science and Engineering, 2021(6): 25−33. [11] 张西琳, 楚栋栋, 张继才, 等. 东南沿海台风风暴潮增水过程中非线性机制和地形的作用研究: 以1509号台风“灿鸿”为例[J]. 海洋与湖沼, 2020, 51(6): 1320−1331.Zhang Xilin, Chu Dongdong, Zhang Jicai, et al. Effects of nonlinear terms and topography on storm surges in the southeast seas of China: a case study of Typhoon Chan-Hom[J]. Oceanologia et Limnologia Sinica, 2020, 51(6): 1320−1331. [12] Chiu S, Small C. Observations of cyclone-induced storm surge in coastal Bangladesh[J]. Journal of Coastal Research, 2016, 32(5): 1149−1161. [13] Krien Y, Testut L, Islam A K M S, et al. Towards improved storm surge models in the northern Bay of Bengal[J]. Continental Shelf Research, 2017, 135: 58−73. doi: 10.1016/j.csr.2017.01.014 [14] Antony C, Unnikrishnan A S, Krien Y, et al. Tide-surge interaction at the head of the Bay of Bengal during Cyclone Aila[J]. Regional Studies in Marine Science, 2020, 35: 101133. doi: 10.1016/j.rsma.2020.101133 [15] As-Salek J A, Yasuda T. Tide-surge interaction in the Meghna Estuary: most severe conditions[J]. Journal of Physical Oceanography, 2001, 31(10): 3059−3072. doi: 10.1175/1520-0485(2001)031<3059:TSIITM>2.0.CO;2 [16] Hussain M A, Tajima Y. Numerical investigation of surge-tide interactions in the Bay of Bengal along the Bangladesh coast[J]. Natural Hazards, 2017, 86(2): 669−694. doi: 10.1007/s11069-016-2711-4 [17] Paul G C, Khatun R, Ali E, et al. Importance of an efficient tide-surge interaction model for the coast of Bangladesh: a case study with the tropical cyclone Roanu[J]. Journal of Coastal Conservation, 2021, 25(1): 12. doi: 10.1007/s11852-020-00787-z [18] Sinha P C, Jain I, Bhardwaj N, et al. Numerical modeling of tide-surge interaction along Orissa coast of India[J]. Natural Hazards, 2008, 45(3): 413−427. doi: 10.1007/s11069-007-9176-4 [19] Islam S N. Deltaic floodplains development and wetland ecosystems management in the Ganges-Brahmaputra-Meghna rivers delta in Bangladesh[J]. Sustainable Water Resources Management, 2016, 2(3): 237−256. doi: 10.1007/s40899-016-0047-6 [20] Rose L, Bhaskaran P K. Tidal propagation and its non-linear characteristics in the Head Bay of Bengal[J]. Estuarine, Coastal and Shelf Science, 2017, 188: 181−198. doi: 10.1016/j.ecss.2017.02.024 [21] Rogers K G, Goodbred S L Jr. The sundarbans and Bengal delta: the world’s largest tidal mangrove and delta system[M]//Kale V S. Landscapes and Landforms of India. Dordrecht: Springer, 2014: 181−187. [22] FVCOM Team. An unstructured grid, finite-volume community ocean model-FVCOM user manual[R]. SMAST/UMASSD-13-0701, 2013. [23] SWAN Team. User manual: SWAN Cycle III version 41.01[R]. The Netherlands: Delft University of Technology, 2014. [24] 王喜年. 风暴潮预报知识讲座 第五讲 风暴潮预报技术(2)[J]. 海洋预报, 2002, 19(2): 64−70.Wang Xinian. Storm prediction knowledge lecture No. 5: storm prediction technique (2)[J]. Marine Forecasts, 2002, 19(2): 64−70. [25] Knapp K R, Diamond H J, Kossin J P, et al. International best track archive for climate stewardship (IBTrACS) project, Version 4[R]. NOAA National Centers for Environmental Information, 2018. [26] Willoughby H E, Darling R W R, Rahn M E. Parametric representation of the primary hurricane vortex. Part II: a new family of sectionally continuous profiles[J]. Monthly Weather Review, 2006, 134(4): 1102−1120. doi: 10.1175/MWR3106.1 [27] Danish Hydraulic Institute (DHI). MIKE 21-Tidal analysis and prediction module, scientific documentation[EB/OL]. https://manuals.mikepoweredbydhi.help/2019/Coast_and_Sea/TideTools_Scientific_Doc.pdf [28] Krien Y, Mayet C, Testut L, et al. Improved bathymetric dataset and tidal model for the northern Bay of Bengal[J]. Marine Geodesy, 2016, 39(6): 422−438. doi: 10.1080/01490419.2016.1227405 [29] Elahi M W E, Jalón-Rojas I, Wang X H, et al. Influence of seasonal river discharge on tidal propagation in the Ganges-Brahmaputra-Meghna Delta, Bangladesh[J]. Journal of Geophysical Research: Oceans, 2020, 125(11): e2020JC016417. doi: 10.1029/2020JC016417 [30] Antony C, Unnikrishnan A S. Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal[J]. Estuarine, Coastal and Shelf Science, 2013, 131: 6−11. doi: 10.1016/j.ecss.2013.08.004 [31] Ke Ziming, Yankovsky A E. Relative role of subinertial and superinertial modes in the coastal long wave response forced by the landfall of a tropical cyclone[J]. Continental Shelf Research, 2011, 31(9): 929−938. doi: 10.1016/j.csr.2011.02.015 [32] As-Salek J A. Coastal trapping and funneling effects on storm surges in the Meghna estuary in relation to cyclones hitting Noakhali–cox’s bazar coast of Bangladesh[J]. Journal of Physical Oceanography, 1998, 28(2): 227−249. doi: 10.1175/1520-0485(1998)028<0227:CTAFEO>2.0.CO;2 [33] Indian Meteorological Department. Report on cyclonic disturbances over north Indian ocean during 2013[R/OL]. [2022–10–10]. https://rsmcnewdelhi.imd.gov.in/uploads/report/27/27_14ab8f_rsmc-2013.pdf [34] Feng X, Olabarrieta M, Valle-Levinson A. Storm-induced semidiurnal perturbations to surges on the US Eastern Seaboard[J]. Continental Shelf Research, 2016, 114: 54−71. doi: 10.1016/j.csr.2015.12.006 [35] McInnes K L, Hubbert G D. A numerical modelling study of storm surges in Bass Strait[J]. Australian Meteorological Magazine, 2003, 52(3): 143−156.