留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种型式的波能装置−浮式防波堤水动力性能比较研究

纪巧玲 陈国强

纪巧玲,陈国强. 两种型式的波能装置−浮式防波堤水动力性能比较研究[J]. 海洋学报,2023,45(6):122–133 doi: 10.12284/hyxb2023065
引用本文: 纪巧玲,陈国强. 两种型式的波能装置−浮式防波堤水动力性能比较研究[J]. 海洋学报,2023,45(6):122–133 doi: 10.12284/hyxb2023065
Ji Qiaoling,Chen Guoqiang. Comparison of hydrodynamic performance of two types of wave energy converter-floating breakwater[J]. Haiyang Xuebao,2023, 45(6):122–133 doi: 10.12284/hyxb2023065
Citation: Ji Qiaoling,Chen Guoqiang. Comparison of hydrodynamic performance of two types of wave energy converter-floating breakwater[J]. Haiyang Xuebao,2023, 45(6):122–133 doi: 10.12284/hyxb2023065

两种型式的波能装置−浮式防波堤水动力性能比较研究

doi: 10.12284/hyxb2023065
基金项目: 山东省自然科学基金(ZR2020ME259);山东省土木工程防灾减灾重点实验室开放课题(CDPM2021KF21);中国科学院海洋环流与波动重点实验室开放研究基金(KLOCW2006)。
详细信息
    作者简介:

    纪巧玲(1984-),女,山东省烟台市人,副教授,硕士生导师,博士,主要研究波浪与结构物相作用和浮式防波堤水动力特性。E-mail:jiqiaoling@126.com

  • 中图分类号: U656

Comparison of hydrodynamic performance of two types of wave energy converter-floating breakwater

  • 摘要: 波能装置−浮式防波堤是将浮式防波堤与波能转换装置集成,兼具防波消浪和捕获波浪能的集成装置,能够有效降低单一功能波能转换装置的成本。研究者们提出了许多波能装置−浮式防波堤的结构型式,其中非对称式浮体结构相比于对称式浮体结构,在单向入射波的水动力性能方面拥有一定的优势。本文针对导桩锚泊的非对称式方箱−三角形挡浪板和方箱−垂直挡浪板两种浮体结构型式,通过数值模拟的方式,对比分析其水动力特性和波能俘获特性。数值模型基于黏性流体理论,以Navier-Stokes方程为控制方程,并采用VOF方法和浸没边界法求解自由面边界和流固耦合作用,探究不同入射波周期、水深和浮体排水条件下集成装置水动力性能(消波特性、能量耗散特性和波能俘获特性)变化趋势。结果表明,在近岸波浪条件下(5~8 s),垂直挡板型式集成装置适用于较小周期波浪(5~6 s),而三角挡板型式集成装置适用于较大周期波浪(6~7.5 s)。随着水深增大,波能俘获比总体上呈现缓慢增长的趋势。在主浮体吃水相同的情况下(排水量不同),两种结构的透射系数基本一致;而在排水量相同(主浮体吃水不同)的情况下,垂直挡板结构型式的防波效果更好,三角挡板结构型式波能俘获性能要优于垂直挡板结构型式。
  • 图  1  三角挡板结构和垂直挡板结构型式的浮子示意图

    Fig.  1  Schematic diagram of floaters with a triangular baffle or vertical baffle

    图  2  数值水槽布置图

    Fig.  2  Layout diagram of the numerical flume

    图  3  不同排水体积和主浮体吃水示意图

    Fig.  3  Schematic diagram of floaters with different displacement volume and box draft

    图  4  自由衰减测试

    Fig.  4  Free decay test

    图  5  数值造波波面与理论值波面对比

    Fig.  5  Comparison of wave surface between numerical and theoretical results

    图  6  方箱数值与实验透射系数对比

    Fig.  6  Comparison of transmission coefficients between numerical and experimental results for a square box

    图  7  不同网格参数计算结果对比

    Fig.  7  Comparisons of calculation results with different mesh parameters

    图  8  三角挡板(a)和垂直挡板(b)结构型式的波能俘获比ηe在不同周期下随PTO阻尼系数BPTO的变化

    Fig.  8  The variation of wave energy capture ratio ηe with PTO damping coefficient BPTO in different wave periods for triangular baffle type (a) and vertical baffle type (b)

    图  9  垂直挡板与三角挡板结构水动力性能随周期的变化

    Fig.  9  The variation of hydrodynamic performance with wave periods for vertical baffle and triangular baffle type

    图  10  不同周期下三角挡板结构和垂直挡板结构的垂荡历时

    Fig.  10  Time history of heave motion of triangular baffle and vertical baffle floater in different wave periods

    图  11  周期T=1.4 s时不同水深下三角挡板结构(a)和垂直挡板结构(b)装置的垂荡历时

    Fig.  11  Time history of heave motion of triangular baffle type (a) and vertical baffle type (b) in different water depth at T = 1.4 s

    图  12  周期T = 1.4 s时三角挡板与垂直挡板集成装置水动力性能随水深的变化

    Fig.  12  The variation of hydrodynamic performance with water depth for vertical baffle and triangular baffle type (T = 1.40 s)

    图  13  排水量不同的垂直挡板与三角挡板集成装置水动力性能随周期的变化

    Fig.  13  The variation of hydrodynamic performance with wave periods for vertical baffle and triangular baffle type in different displacement volume

    表  1  水深波浪周期和PTO阻尼系数工况参数表

    Tab.  1  Table of condition parameter for water depth,wave period and PTO damping coefficient

    结构型式水深/m波浪周期/sPTO阻尼系数/(kg·s−1)
    三角挡板、垂直挡板1.51.2060,100,150,200,250
    1.51.4060,100,150,200,250
    1.51.5860,100,150,200,250
    1.51.7960,100,150,200,250
    三角挡板1.50,1.75,2.00,2.25,2.501.40150
    垂直挡板1.50,1.75,2.00,2.25,2.501.40200
    下载: 导出CSV

    表  2  主浮体吃水和排水量工况参数表

    Tab.  2  Table of condition parameters for box draft and displacement volume

    结构型式主浮体吃水/m排水量/m3
    垂直挡板0.150.0565
    三角挡板0.150.0978
    垂直挡板0.360.0978
    下载: 导出CSV

    表  3  网格参数设置

    Tab.  3  Mesh parameter setting

    算例网格数Δx/cmΔy/cm
    Test 1458×17021
    Test 2458×24620.5
    Test 3554×2460.80.5
    Test 4554×5140.80.2
    Test 5718×5140.40.2
    Test 6718×1 0330.40.1
    Test 7958×1 0330.20.1
    下载: 导出CSV

    表  4  两种结构型式在不同波浪周期下的最优PTO阻尼系数(BOPTO

    Tab.  4  Optimal PTO damping coefficient BOPTO of two structures in different wave periods

    结构型式入射波周期/sBOPTO/(kg·s−1)
    三角挡板1.20150
    1.40100
    1.58150
    1.79200~250
    垂直挡板1.20150
    1.40150
    1.58200
    1.79250
    下载: 导出CSV
  • [1] 刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J]. 山东大学学报(工学版), 2021, 51(5): 63−75.

    Liu Yanjun, Wu Shuang, Wang Dengshuai, et al. Research progress of ocean wave energy converters[J]. Journal of Shandong University (Engineering Science), 2021, 51(5): 63−75.
    [2] 谢典, 顾煜炯, 余志文, 等. 波浪能发电装置的性能分析及综合评价[J]. 水力发电学报, 2017, 36(8): 113−120.

    Xie Dian, Gu Yujiong, Yu Zhiwen, et al. Performance analysis and comprehensive evaluation of wave energy power generation devices[J]. Journal of Hydroelectric Engineering, 2017, 36(8): 113−120.
    [3] 孙科, 解光慈, 周斌珍. 波能装置浮子选型及水动力性能分析[J]. 哈尔滨工程大学学报, 2021, 42(1): 8−14. doi: 10.11990/jheu.201908011

    Sun Ke, Xie Guangci, Zhou Binzhen. Type selection and hydrodynamic performance analysis of wave energy converters[J]. Journal of Harbin Engineering University, 2021, 42(1): 8−14. doi: 10.11990/jheu.201908011
    [4] Ning Dezhi, Zhao Xuanlie, Göteman M, et al. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study[J]. Renewable Energy, 2016, 95: 531−541. doi: 10.1016/j.renene.2016.04.057
    [5] Zhao Xuanlie, Ning Dezhi. Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons[J]. Energy, 2018, 155: 226−233. doi: 10.1016/j.energy.2018.04.189
    [6] 毛艳军, 马哲, 程勇, 等. 动力输出系统(PTO)对集成波能转换装置式防波堤消波性能及波能捕获率影响研究[J]. 海洋工程, 2019, 37(4): 45−53.

    Mao Yanjun, Ma Zhe, Cheng Yong, et al. Effect of the PTO damping force on the wave damping performance and wave capture efficiency of a WEC-type breakwater[J]. Ocean Engineering, 2019, 37(4): 45−53.
    [7] 张恒铭. 波能装置与浮式防波堤集成系统的水动力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    Zhang Hengming. Study on hydrodynamic characteristics of integrated system of wave energy converter and floating breakwater[D]. Harbin: Harbin Engineering University, 2019.
    [8] 王世林, 于定勇, 谢雨嘉, 等. 方箱−垂直板浮式防波堤水动力特性研究[C]//海洋工程学会. 第十九届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2019: 421-428.

    Wang Shilin, Yu Dingyong, Xie Yujia, et al. Study on hydrodynamic characteristics of square box-vertical plate floating breakwater[C]//Chinese Society for Oceanography. Proceedings of the Nineteenth Chinese Symposium on Ocean (Coastal) Engineering (I). Beijing: China Ocean Press, 2019: 421−428.
    [9] Ji Qiaoling, Xu Chenghao, Jiao Chunshuo. Numerical investigation on the hydrodynamic performance of a vertical pile-restrained reversed L type floating breakwater integrated with WEC[J]. Ocean Engineering, 2021, 238: 109635. doi: 10.1016/j.oceaneng.2021.109635
    [10] 刘崇期. 兼具波浪能提取功能的浮式防波堤性能研究[D]. 大连: 大连理工大学, 2015.

    Liu Chongqi. Performance of floating breakwater double used as wave energy convertor[D]. Dalian: Dalian University of Technology, 2015.
    [11] 张亮, 国威, 王树齐. 一种点吸式波浪能装置水动力性能优化[J]. 哈尔滨工业大学学报, 2015, 47(7): 117−121.

    Zhang Liang, Guo Wei, Wang Shuqi. Hydrodynamic performance optimization of a point absorber[J]. Journal of Harbin Institute of Technology, 2015, 47(7): 117−121.
    [12] 陈子和, 嵇春艳, 郭建廷, 等. 振荡浮子式波能发电浮堤一体化装置性能研究[J]. 船舶工程, 2021, 43(10): 22−30.

    Chen Zihe, Ji Chunyan, Guo Jianting, et al. Performance investigation of an integrated device of oscillating buoy wave energy converter and Floating Breakwater[J]. Ship Engineering, 2021, 43(10): 22−30.
    [13] Zhu Xinying. Application of the CIP method to strongly nonlinear wave-body interaction problems[D]. Trondheim: Norwegian University of Science and Technology, 2006.
    [14] 赵西增, 刘必劲, 梁书秀, 等. 紧致插值曲线CIP方法及其应用[J]. 船舶力学, 2016, 20(4): 393−402.

    Zhao Xizeng, Liu Bijin, Liang Shuxiu, et al. Constrained Interpolation Profile (CIP) method and its application[J]. Journal of Ship Mechanics, 2016, 20(4): 393−402.
    [15] Xu Sheng, Wang Z J. An immersed interface method for simulating the interaction of a fluid with moving boundaries[J]. Journal of Computational Physics, 2006, 216(2): 454−493. doi: 10.1016/j.jcp.2005.12.016
    [16] Xiao F, Honma Y, Kono T. A simple algebraic interface capturing scheme using hyperbolic tangent function[J]. International Journal for Numerical Methods in Fluids, 2005, 48(9): 1023−1040. doi: 10.1002/fld.975
    [17] Xu Jing, Wang Dongshi, Huang Hui, et al. A vortex-induced vibration model for the fatigue analysis of a marine drilling riser[J]. Ships and Offshore Structures, 2017, 12(S1): S280−S287.
    [18] 刘冲. 垂直导桩锚固方箱−水平板式浮防波堤试验研究[D]. 大连: 大连理工大学, 2008.

    Liu Chong. Experimental study on pile-restrained pontoon-plates floating breakwater[D]. Dalian: Dalian University of Technology, 2008.
    [19] Koutandos E, Prinos P, Gironella X. Floating breakwaters under regular and irregular wave forcing: reflection and transmission characteristics[J]. Journal of Hydraulic Research, 2005, 43(2): 174−188. doi: 10.1080/00221686.2005.9641234
    [20] He Fang, Huang Zhenhua, Law A W K. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction[J]. Applied Energy, 2013, 106: 222−231. doi: 10.1016/j.apenergy.2013.01.013
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  147
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 修回日期:  2022-11-30
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回