Textural and trace elemental characteristics of sulfide from the Longqi hydrothermal field, Southwest Indian RidgeImplication for the occurrence and precipitation mechanism of gold
-
摘要: 相比于快速和中速扩张洋中脊,慢速和超慢速扩张洋中脊热液区通常含有丰富的金属硫化物资源。近年来的研究表明大洋中脊的扩张速率与矿石中金的品位呈明显的负相关,即超慢速扩张洋中脊热液区矿石中金的含量高。前人对龙旂热液区的构造环境以及硫化物组合进行了详细研究,但是对龙旂热液区硫化物中贵金属金的赋存形式和沉淀机制研究较少。本文对西南印度洋龙旂热液区中的硫化物进行了精细的矿物结构和微量元素分析,并探讨了金的赋存形式和沉淀机制。龙旂热液区的硫化物主要以黄铁矿为主,其次是黄铜矿和闪锌矿,黄铜矿普遍出溶等轴古巴矿,此外还观察到了少量的针钠铁矾和自然金等矿物。根据矿物结构和形态,黄铁矿明显被划分为两期,一期黄铁矿(Py1)自形度低,呈细粒状或胶状,内部多孔洞;二期黄铁矿(Py2)自形度高,呈自形−半自形,且粒径较大。Py1往往存在于Py2内部或以包体的形式被Py2所包裹,Py2则与自形−半自形黄铜矿和闪锌矿等矿物共生。自然金主要存在于Py1的内部孔洞之中,少量存在于Py2以及Py2与其他硫化物之间。相比于Py2,Py1含有更高的Ni、Zn、Pb、Ba、Mn、V、Mg、U、Au、Ag、Cd元素含量,更低的Co、Se、As、Sb元素含量。在龙旂热液区的物理化学条件下,热液流体中金的主要存在形式为Au(HS),HS−浓度的降低和pH值升高均会促进金的沉淀。龙旂热液区早期热液流体与海水的混合造成热液流体pH值升高,而混合作用导致的热液流体温度降低会促使黄铁矿(Py1)的结晶,从而促使热液流体中HS−浓度的降低,热液流体pH值升高和黄铁矿结晶(Py1)引起的硫逸度降低是龙旂热液区自然金沉淀的主要机制。Abstract: Compared with the fast and intermediate spreading mid-ocean ridges, the hydrothermal fields forming at slow and ultra-slow mid-ocean ridges usually contain abundant metal sulfide resources. Previously statistical results suggested the gold concentrations in massive sulfide deposits decreases with the increase of spreading rate, and the hydrothermal fields, located in ultra-slow mid-ocean ridges, have the highest gold concentrations. Previous studies carried out detailed research on the tectonic environment and sulfide assemblage of the Longqi hydrothermal field, but the occurrence and precipitation mechanism of gold in the Longqi hydrothermal field still need further research. In this paper, the texture and trace element concentration of sulfides in the Longqi hydrothermal field are analyzed in order to investigate the occurrence and precipitation mechanism of gold. The sulfides in the Longqi hydrothermal field are mainly pyrite, along with chalcopyrite (isocubanite) and sphalerite. Minerals such as ferronatrite and native gold have also been observed. According to the mineral texture and morphology, pyrite is divided into two types the first type (Py1) is fine-grained or colloidal, while the other type (Py2) shows subhedral-euhedral with coarse grain. Py1 usually exists in Py2 or is surrounded by Py2 as inclusions, and Py2 coexists with euhedral-subhedral chalcopyrite and sphalerite. Native gold mainly exists in the internal pores of Py1, and minor grains exist between Py2 and other sulfides. Compared with Py2, Py1 contains higher trace element contents of Ni, Zn, Pb, Ba, Mn, V, Mg, U, Au, Ag, Cd, and lower contents of Co, Se, As, Sb. Under the physico-chemical conditions of the Longqi hydrothermal field, Au(HS) is the main existing form of Au. The decrease of HS− concentration and the increase of pH value will promote the precipitation of gold. The mixing of hydrothermal fluids with seawater in the Longqi hydrothermal field results in an increase in pH values and a decrease in temperature, which can lead to pyrite crystallization and consequently decrease of sulfur fugacity of hydrothermal fluid. An increase in pH and decrease of sulfur fugacity both contributed to the precipitation of gold.
-
图 3 龙旂热液区黄铁矿显微照片(I)
a−b:存在于自形黄铁矿内部的细粒黄铁矿;c−e:细粒黄铁矿包体;f:细粒黄铁矿被自形黄铁矿包围;Py1:一期黄铁矿,Py2:二期黄铁矿,Sp:闪锌矿,Ccp:黄铜矿
Fig. 3 Photomicrograph of pyrite in Longqi hydrothermal field(I)
a−b: Fine-grained pyrite found in the euhedral pyrite; c−e: fine-grained pyrite inclusions; f: fine-grained pyrite is surrounded by euhedral pyrite; Py1: pyrite I, Py2: pyrite II, Sp: sphalerite, Ccp: chalcopyrite
图 4 龙旂热液区黄铁矿显微照片(II)
a−c,f:黄铜矿和闪锌矿填充黄铁矿内部的孔洞;d−e:闪锌矿内部含有黄铜矿;Py1:一期黄铁矿,Py2:二期黄铁矿,Sp:闪锌矿,Ccp:黄铜矿
Fig. 4 Photomicrograph of pyrite in Longqi hydrothermal field(II)
a−c, f: Chalcopyrite and sphalerite fill the pores of pyrite; d−e: the sphalerite contains chalcopyrite; Py1: pyrite I, Py2: pyrite II, Sp: sphalerite, Ccp: chalcopyrite
图 5 龙旂热液区黄铜矿显微照片
a−b:以环状集合体形式出现的黄铜矿;c:黄铜矿出溶等轴古巴矿;d−f:和闪锌矿共生的黄铜矿;Py1:一期黄铁矿,Py2:二期黄铁矿,Sp:闪锌矿,Ccp:黄铜矿,Iso:等轴古巴矿
Fig. 5 Photomicrograph of chalcopyrite in Longqi hydrothermal field
a−b: Chalcopyrite occurs as annular aggregate; c: exsolution texture of isocubanite; d−f: coexistence of chalcopyrite and sphalerite symbiosis; Py1: pyrite I, Py2: pyrite II, Sp: sphalerite, Ccp: chalcopyrite, Iso: isocubanite
图 6 龙旂热液区闪锌矿及针钠铁矾矿显微照片
a:闪锌矿大块集合体;b−d:与黄铜矿共生的闪锌矿;e−f:存在于黄铁矿和闪锌矿附近的针钠铁矾;Py1:一期黄铁矿,Py2:二期黄铁矿,Sp:闪锌矿,Ccp:黄铜矿,Iso:等轴古巴矿,Frt:针钠铁矾
Fig. 6 Photomicrograph of sphalerite and ferronatrite in Longqi hydrothermal field
a: Large aggregate of sphalerite; b−d: symbiosis of sphalerite and chalcopyrite; e−f: ferronatrite found near pyrite and sphalerite; Py1: pyrite I, Py2: pyrite II, Sp: sphalerite, Ccp: chalcopyrite, Iso: isocubanite, Frt: ferronatrite
图 7 龙旂热液区自然金显微照片
a−c:存在于细粒黄铁矿和其他矿物溶蚀孔洞之中的自然金;d−e: 包裹于自形黄铁矿中的自然金;f:存在于黄铁矿和其他矿物之间的自然金;Py1:一期黄铁矿,Py2:二期黄铁矿,Sp:闪锌矿,Ccp:黄铜矿,Au:自然金
Fig. 7 Photomicrograph of Native gold in Longqi hydrothermal field
a−c: Native gold found in pores of fine-pyrite and other minerals; d−e: native gold occurs in euhedral pyrite f: native gold found between pyrite and other mineral; Py1: pyrite I, Py2: pyrite II, Sp: sphalerite, Ccp: chalcopyrite, Au: gold
表 1 黄铁矿、黄铜矿、闪锌矿的LA-ICP-MS分析结果
Tab. 1 LA-ICP-MS analysis results of pyrite、chalcopyrite and sphalerite
类型 样品编号 含量/10−6 Cu(1σ) Zn(1σ) V(1σ) Mn(1σ) Co(1σ) Ni(1σ) As(1σ) Se(1σ) Mo(1σ) Ag(1σ) Sn(1σ) Sb(1σ) Ba(1σ) Au(1σ) Pb(1σ) U(1σ) 一期黄铁矿 19II-S7-TVG4-2-1 173(6.76) 4.55(1.33) 0.45(0.04) — 124(7.63) 0.43(0.10) 138(5.11) 0.25(0.29) 7.15(0.95) 8.23(0.71) 1.34(0.11) 5.43(0.27) 0.05(0.03) 1.68(0.19) 76.0(7.21) 0.01(0.00) 19II-S7-TVG4-2-2 138(4.70) 10.8(0.84) 0.52(0.04) 0.88(0.11) 12.4(2.27) 1.20(0.12) 19.5(2.31) 0.86(0.24) 22.3(0.49) 14.4(0.58) 1.48(0.08) 1.91(0.17) — 2.77(0.11) 226(6.00) — 19II-S7-TVG4-7-1 669(24.8) 745(30.8) 0.88(0.06) 283(6.64) 10.8(0.68) 1.67(0.18) 34.5(1.09) 2.16(0.31) 26.8(0.82) 115(3.21) 5.57(0.20) 2.80(0.11) 0.18(0.05) 2.60(0.11) 93.4(1.67) 0.03(0.01) 19II-S7-TVG4-7-2 365(16.6) 181(10.0) 0.62(0.04) 174(7.51) 282(16.2) 0.81(0.12) 39.8(1.22) 3.79(0.50) 15.4(0.70) 57.8(2.39) 3.86(0.18) 2.38(0.13) 0.12(0.03) 1.58(0.10) 63.2(2.15) 0.01(0.00) 19II-S7-TVG4-7-3 853(31.1) 2497(80.8) 1.05(0.12) 647(21.2) 2.38(0.12) 0.87(0.11) 29.0(0.91) 2.79(0.43) 16.8(0.62) 143(6.14) 4.47(0.18) 3.96(0.24) 0.34(0.07) 1.79(0.09) 117(3.94) 0.02(0.00) 19II-S7-TVG4-7-4 1030(36.6) 795(38.6) 0.60(0.04) 113(3.24) 10.8(0.67) 2.02(0.17) 29.5(0.57) 2.98(0.30) 49.2(1.57) 158(6.58) 4.71(0.16) 4.50(0.17) 0.14(0.03) 3.01(0.13) 130(2.86) 0.15(0.10) 19II-S7-TVG4-7-5 414(15.7) 4742(165) 0.56(0.04) 12.8(0.43) 1.52(0.20) 0.93(0.11) 6.18(0.36) 1.01(0.25) 12.0(0.33) 9.78(0.38) 1.42(0.08) 1.47(0.11) — 2.02(0.10) 130(2.01) 0.02(0.00) 19II-S7-TVG4-7-6 1563(86.3) 2619(68.7) 0.72(0.06) 57.1(3.16) 584(32.2) 1.00(0.13) 28.4(1.41) 2.56(0.44) 14.8(0.80) 257(13.1) 19.5(0.94) 8.63(0.52) 0.28(0.07) 4.67(0.29) 219(10.6) 0.01(0.00) 19II-S7-TVG4-7-7 1685(66.7) 2129(49.8) 0.45(0.04) 49.9(2.60) 640(29.7) 0.64(0.10) 38.5(1.34) 2.77(0.37) 13.9(0.60) 254(9.78) 19.6(0.63) 8.08(0.29) 0.11(0.04) 4.71(0.20) 225(7.79) 0.01(0.00) 19II-S7-TVG4-7-8 1217(68.3) 387(13.1) 0.71(0.05) 313(10.5) 856(32.1) 1.39(0.13) 28.7(0.73) 4.69(0.48) 37.2(1.79) 131(5.84) 8.91(0.34) 4.04(0.22) 0.11(0.03) 3.57(0.19) 138(5.25) 0.02(0.00) 19II-S7-TVG4-7-9 727(27.2) 918(56.1) 0.78(0.05) 440(10.6) 253(12.9) 2.27(0.17) 26.3(0.65) 4.00(0.38) 59.3(2.98) 113(4.64) 3.26(0.15) 2.93(0.14) 0.16(0.04) 2.21(0.11) 104(3.02) 0.05(0.00) 19II-S7-TVG4-7-10 465(15.1) 212(13.1) 0.45(0.04) 236(8.80) 1200(57.3) 0.48(0.70) 36.9(0.98) 6.98(0.50) 14.9(0.65) 75.8(2.46) 3.87(0.14) 2.38(0.11) 0.09(0.03) 1.49(0.08) 79.6(2.61) — 19II-S7-TVG4-7-11 602(21.9) 784(32.7) 0.72(0.05) 420(14.1) 31.2(2.40) 0.95(0.10) 25.5(0.74) 3.87(0.38) 25.8(0.98) 88.6(3.33) 3.74(0.18) 2.87(0.16) 0.14(0.04) 1.61(0.10) 94.6(3.50) 0.02(0.00) 最大值 1685 4742 1.05 647 1200 2.27 138 6.98 59.3 257 19.6 8.63 0.34 4.71 226 0.15 最小值 138 4.55 0.45 0.88 1.52 0.43 6.18 0.25 7.15 8.23 1.34 1.47 0.05 1.49 63.2 0.01 平均值 782 1385 0.67 229 347 1.16 41.7 3.06 25.5 113 6.84 4.1 0.16 2.66 132 0.04 二期黄铁矿 19II-S7-TVG4-2-3 74.3(3.29) 3.38(0.48) 0.35(0.04) 0.40(0.11) 931(62.0) 0.26(0.07) 162(9.64) 0.42(0.29) 5.57(0.38) 5.54(0.27) 0.55(0.09) 4.87(0.29) 0.02(0.02) 1.53(0.09) 87.6(4.67) — 19II-S7-TVG4-2-4 62.6(1.68) 66.5(7.19) 0.34(0.03) 0.78(0.14) 120(23.0) 0.48(0.08) 46.4(3.60) 0.36(0.22) 11.5(0.65) 4.89(0.21) 0.50(0.05) 1.61(0.11) — 1.05(0.06) 179(4.24) — 二期黄铁矿 19II-S7-TVG4-2-5 66.0(3.82) 7.15(1.53) 0.30(0.03) 0.38(0.09) 1113(79.1) 0.16(0.06) 307(8.36) 0.47(0.26) 1.92(0.13) 2.41(0.15) 0.65(0.07) 5.63(0.20) — 0.79(0.08) 94.8(1.62) — 19II-S7-TVG4-2-6 75.4(2.30) 138(19.1) 0.44(0.03) 1.49(0.10) 0.82(0.05) 0.73(0.10) 4.10(0.41) 1.18(0.24) 17.8(0.46) 3.16(0.19) 0.31(0.05) 0.63(0.05) — 1.13(0.08) 221(6.84) — 19II-S7-TVG4-2-7 181(5.51) 4046(246) 0.47(0.03) 2.05(0.12) 37.1(4.46) 1.21(0.11) 42.0(3.25) 0.39(0.26) 22.0(0.91) 4.64(0.25) 0.59(0.06) 1.40(0.12) — 1.01(0.06) 198(6.24) — 19II-S7-TVG4-6-1 43.0(2.41) 1.47(0.37) 0.13(0.02) — 0.70(0.67) 0.28(0.20) 370(6.45) 0.6(0.20) 0.50(0.06) 0.94(0.09) 0.17(0.06) 10.5(0.31) 0.03(0.03) 0.13(0.02) 3.03(0.27) — 19II-S7-TVG4-6-2 122(5.80) 44.7(5.41) 0.24(0.02) 0.09(0.08) 0.29(0.05) 0.16(0.10) 65.2(2.18) — 0.31(0.05) 6.58(0.36) 0.67(0.06) 16.3(0.60) — 0.34(0.03) 5.16(0.23) — 19II-S7-TVG4-6-3 107(4.27) 184(6.94) 0.18(0.02) 0.21(0.07) 0.03(0.01) 0.01(0.02) 151(6.97) — 0.14(0.03) 4.70(0.34) 0.56(0.06) 14.4(0.40) 0.02(0.02) 0.38(0.03) 4.32(0.17) — 19II-S7-TVG4-7-12 54.1(3.98) 16.5(1.74) 0.18(0.02) — 2702(84.5) — 342(8.81) 22.6(0.88) 0.22(0.04) 2.02(0.17) 0.37(0.05) 5.52(0.21) — 0.15(0.02) 6.67(0.36) — 19II-S7-TVG4-7-13 31.6(1.38) 1512(68) 0.17(0.02) — 3269(83.0) 0.04(0.03) 327(5.84) 24.7(1.33) 0.20(0.04) 1.69(0.11) 0.09(0.04) 5.77(0.17) — 0.06(0.01) 1.12(0.06) — 19II-S7-TVG4-7-14 62.7(5.43) 17.0(1.80) 0.17(0.03) 0.17(0.08) 2556(145) — 327(3.72) 29.2(1.98) 0.79(0.13) 3.21(0.19) 0.40(0.07) 4.77(0.17) — 0.11(0.02) 13.1(0.45) — 19II-S7-TVG4-7-15 25.2(0.99) 9.73(1.58) 0.16(0.02) — 5534(267) 0.02(0.03) 326(7.54) 45.6(1.94) 0.35(0.05) 0.80(0.07) 0.04(0.05) 6.94(0.22) — 0.09(0.02) 1.91(0.22) — 19II-S7-TVG4-7-16 21.5(1.00) 13.5(1.43) 0.17(0.03) 0.08(0.07) 5848(313) 1.65(1.67) 334(7.68) 48.2(1.90) 0.28(0.05) 0.38(0.05) 0.16(0.04) 6.92(0.22) 0.01(0.01) 0.04(0.01) 0.47(0.05) — 最大值 181 4046 0.47 2.05 5848 1.65 370 48.2 22 6.58 0.67 16.3 0.03 1.53 221 — 最小值 21.5 1.47 0.13 0.08 0.03 0.01 4.1 0.36 0.14 0.38 0.04 0.63 0.01 0.04 0.47 — 平均值 75.3 674 0.26 0.71 1864 0.51 216 17.1 5.58 3.19 0.38 6.81 0.02 0.56 69.2 — 闪锌矿 19II-S7-TVG4-2-8 335842(6262) 287(9.97) 0.09(0.04) 4.83(0.34) 44.3(1.10) 0.36(0.15) — 70.6(4.02) — 61.8(1.84) 6.23(0.29) — 0.03(0.02) 0.24(0.06) — 0.02(0.01) 19II-S7-TVG4-2-9 336661(6154) 175(6.25) 0.03(0.04) 3.35(0.35) 43.5(0.97) 0.23(0.12) — 42.9(2.43) 0.02(0.04) 62.8(1.85) 4.95(0.30) 0.04(0.08) 0.07(0.04) — 0.11(0.05) — 19II-S7-TVG4-2-10 324280(5933) 153(4.93) 0.14(0.05) 3.36(0.32) 44.5(1.42) 0.41(0.15) 1.43(0.37) 45.7(2.19) — 61.1(1.79) 4.18(0.28) — — 0.22(0.04) 0.03(0.04) — 19II-S7-TVG4-2-11 345651(8092) 526(12.8) — 6.58(0.31) 52.9(1.35) — — 39.4(2.16) 0.03(0.04) 52.2(1.73) 4.18(0.22) 0.19(0.06) 0.04(0.03) 0.23(0.05) — — 闪锌矿 19II-S7-TVG4-2-12 330451(5126) 1054(23.1) 0.11(0.04) 7.88(0.34) 59.4(1.39) 0.27(0.13) — 34.6(2.07) — 52.1(1.32) 4.91(0.24) 0.09(0.06) — 0.13(0.03) 0.05(0.04) — 19II-S7-TVG4-2-13 336351(5833) 479(10.0) 0.05(0.03) 6.15(0.32) 53.1(1.24) 0.47(0.11) 1.12(0.40) 44.3(2.29) — 48.3(1.09) 4.03(0.22) 0.29(0.07) 0.01(0.01) 0.18(0.04) 0.22(0.04) — 19II-S7-TVG4-2-14 330208(5120) 133(3.77) — 5.01(0.26) 52.6(1.27) — — 61.9(2.82) — 59.3(1.39) 7.01(0.32) 0.06(0.06) 0.02(0.03) 0.26(0.04) 0.13(0.04) — 19II-S7-TVG4-2-15 333972(5083) 137(4.73) 0.14(0.04) 5.01(0.29) 45.3(0.96) 0.29(0.13) — 69.7(2.91) — 65.5(1.66) 7.66(0.30) — — 0.16(0.04) — — 19II-S7-TVG4-2-16 343704(4923) 144(4.58) 0.02(0.03) 5.13(0.31) 47.7(0.97) 0.15(0.13) 0.74(0.36) 59.6(2.84) 0.06(0.03) 61.1(1.34) 5.04(0.28) 0.06(0.06) — 0.20(0.04) 0.09(0.04) 0.01(0.00) 最大值 345651 1054 0.14 7.88 59.4 0.47 1.43 70.6 0.06 65.5 7.66 0.29 0.07 0.26 0.22 0.02 最小值 324280 133 0.02 3.35 43.5 0.15 0.74 34.6 0.02 48.3 4.03 0.04 0.01 0.13 0.03 0.01 平均值 335186 389 0.08 5.32 49.7 0.31 1.09 52.2 0.04 58 5.44 0.13 0.04 0.2 0.11 0.02 黄铜矿 19II-S7-TVG4-7-17 5793(97.9) 643760(10220) — 56.8(1.20) 8.32(0.25) 0.03(0.01) 9.44(0.39) 1.66(0.37) — 388(5.60) 4.08(0.16) 4.80(0.22) — 0.37(0.03) 553(8.40) — 19II-S7-TVG4-7-18 3996(98.0) 644943(10652) — 38.9(0.92) 8.97(0.20) 0.03(0.02) 6.85(0.29) 1.31(0.34) — 382(11.4) 8.52(0.24) 3.51(0.13) — 0.83(0.05) 407(11.0) — 19II-S7-TVG4-7-19 3452(58.8) 639219(10078) — 30.4(0.56) 9.63(0.23) 0.04(0.03) 7.72(0.27) 1.33(0.30) — 209(4.56) 11.7(0.21) 3.08(0.11) 0.01(0.01) 0.45(0.04) 209(4.58) — 19II-S7-TVG4-7-20 5574(128) 640315(10063) 0.04(0.02) 65.1(1.51) 8.90(0.20) — 8.3(0.30) — — 460(5.07) 4.13(0.20) 11.3(0.50) — 0.70(0.04) 439(3.88) — 19II-S7-TVG4-7-21 4005(100) 625020(9235) 0.07(0.02) 56.6(1.19) 0.43(0.06) 0.06(0.04) 0.49(0.16) 1.16(0.28) — 1680(53.0) 653(16.9) 90.9(1.84) 0.02(0.01) 0.91(0.05) 188(5.98) — 19II-S7-TVG4-7-22 4416(57.8) 618220(10031) — 37.6(0.56) 18.3(0.28) — 5.77(0.30) 1.02(0.30) — 158(3.03) 39.2(0.63) 11.1(0.22) 0.01(0.01) 0.18(0.02) 59.9(4.46) — 19II-S7-TVG4-7-23 6117(103) 639676(10343) 0.02(0.01) 36.6(0.73) 9.65(0.26) 0.05(0.03) 8.79(0.30) 1.81(0.30) — 418(8.79) 73.6(1.03) 20.4(0.47) — 0.50(0.04) 268(7.03) — 19II-S7-TVG4-7-24 4927(67.3) 643376(10009) 0.04(0.02) 32.8(0.72) 9.24(0.26) 0.09(0.03) 6.56(0.29) 0.48(0.31) 0.01(0.01) 452(7.19) 33.5(0.92) 8.52(0.28) — 0.53(0.04) 159(4.38) — 最大值 6117 644943 0.07 65.1 18.3 0.09 9.44 1.81 0.01 1680 653 90.9 0.02 0.91 553 — 最小值 3452 618220 0.02 30.4 0.43 0.03 0.49 0.48 0.01 158 4.08 3.08 0.01 0.18 59.9 — 平均值 4785 635769 0.04 45 9.22 0.05 6.39 1.23 0.01 599 148.5 24.8 0.01 0.56 290 — 注:“—”代表含量在仪器检测限之下;1σ 为一倍标准偏差。 -
[1] Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 111−141. [2] Bach W, Banerjee N R, Dick H J B, et al. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°−16°E[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(7): 1−14. [3] Dias Á S, Barriga F J A S. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′ N; 33°26′ W) at MAR[J]. Marine Geology, 2006, 225(1/4): 157−175. [4] Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J]. Oceanography, 2007, 20(1): 50−65. doi: 10.5670/oceanog.2007.80 [5] Boltovskoy D. Encyclopedia of marine geosciences[J]. Ameghiniana, 2017, 54(2): 255−256. doi: 10.5710/AMGH.v54i2.1 [6] Ye Jun, Shi Xuefa, Yang Yaomin, et al. The occurrence of gold in hydrothermal sulfide at Southwest Indian Ridge 49.6°E[J]. Acta Oceanologica Sinica, 2012, 31(6): 72−82. doi: 10.1007/s13131-012-0254-4 [7] Fuchs S, Hannington M D, Petersen S. Divining gold in seafloor polymetallic massive sulfide systems[J]. Mineralium Deposita, 2019, 54(6): 789−820. doi: 10.1007/s00126-019-00895-3 [8] Moss R, Scott S D. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus Basin, Papua New Guinea[J]. The Canadian Mineralogist, 2001, 39(4): 957−978. doi: 10.2113/gscanmin.39.4.957 [9] Knight R D, Roberts S, Webber A P. The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges[J]. Mineralium Deposita, 2018, 53(1): 143−152. doi: 10.1007/s00126-017-0762-4 [10] 黄威, 陶春辉, 廖时理, 等. 金在洋脊超镁铁质与镁铁质热液系统中的差异性聚集[J]. 海洋地质与第四纪地质, 2020, 40(1): 126−135.Huang Wei, Tao Chunhui, Liao Shili, et al. Differential deposition of gold in mafic-hosted and ultramafic-hosted hydrothermal systems on the mid-ocean ridge[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 126−135. [11] Hannington M D, Peter J M, Scott S D. Gold in sea-floor polymetallic sulfide deposits[J]. Economic Geology, 1986, 81(8): 1867−1883. doi: 10.2113/gsecongeo.81.8.1867 [12] Herzig P M, Hannington M D, Fouquet Y, et al. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific[J]. Economic Geology, 1993, 88(8): 2182−2209. doi: 10.2113/gsecongeo.88.8.2182 [13] 张海桃, 杨耀民, 梁娟娟, 等. 全球现代海底块状硫化物矿床资源量估计[J]. 海洋地质与第四纪地质, 2014, 34(5): 107−118.Zhang Haitao, Yang Yaomin, Liang Juanjuan, et al. A global estimate of resource potential for modern seafloor massive sulfide deposits[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 107−118. [14] Hannington M D, Petersen S, Herzig P M, et al. A global database of seafloor hydrothermal systems, including a digital database of geochemical analyses of seafloor polymetallic sulfides[R]. Ottawa: Geological Survey of Canada, 2004: 4598. [15] Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges[J]. Comptes Rendus Geoscience, 2003, 335(10/11): 825−852. [16] Pokrovski G S, Akinfiev N N, Borisova A Y, et al. Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling[J]. Geological Society, London, Special Publications, 2014, 402(1): 9−70. doi: 10.1144/SP402.4 [17] Petersen S, Krätschell A, Augustin N, et al. News from the seabed——Geological characteristics and resource potential of deep-sea mineral resources[J]. Marine Policy, 2016, 70: 175−187. doi: 10.1016/j.marpol.2016.03.012 [18] 叶俊, 石学法, 杨耀民, 等. 西南印度洋超慢速扩张脊49.6°E热液区硫化物矿物学特征及其意义[J]. 矿物学报, 2011, 31(1): 17−29.Ye Jun, Shi Xuefa, Yang Yaomin, et al. Mineralogy of sulfides from ultraslow spreading southwest Indian ridge 49.6°E hydrothermal field and its metallogenic significance[J]. Acta Mineralogica Sinica, 2011, 31(1): 17−29. [19] 曹红, 孙治雷, 刘昌岭, 等. 西南印度洋脊龙旂热液场金属硫化物的矿物学组成及指示意义[J]. 海洋地质与第四纪地质, 2018, 38(4): 179−192.Cao Hong, Sun Zhilei, Liu Changling, et al. Mineralogical composition and its significance of hydrothermal sulfides from the Longqi hydrothermal field on the Southwest Indian Ridge[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 179−192. [20] Tao Chunhui, Li Huaiming, Huang Wei, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56(26): 2828−2838. doi: 10.1007/s11434-011-4619-4 [21] Mercier-Langevin P, Hannington M D, Dubé B, et al. The gold content of volcanogenic massive sulfide deposits[J]. Mineralium Deposita, 2011, 46(5): 509−539. [22] Pantó G, Pantó G. Electron-probe check of fe-distribution in sphalerite grains of the Nagybörzsöny hydrothermal ore deposits, Hungary[J]. Mineralium Deposita, 1972, 7(2): 126−140. doi: 10.1007/BF00207150 [23] Georgen J E, Lin Jian, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 283−300. [24] Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge[J]. Chinese Science Bulletin, 2014, 59(19): 2266−2276. doi: 10.1007/s11434-014-0182-0 [25] 李小虎, 初凤友, 雷吉江, 等. 现代海底超镁铁质岩系热液系统与地质意义[J]. 海洋地质与第四纪地质, 2008, 28(4): 133−139.Li Xiaohu, Chu Fengyou, Lei Jijiang, et al. Characteristics of seafloor ultramafic hosted hydrothermal systems and the implications[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 133−139. [26] Münch U, Lalou C, Halbach P, et al. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E-mineralogy, chemistry and chronology of sulfide samples[J]. Chemical Geology, 2001, 177(3/4): 341−349. [27] Tao Chunhui, Lin Jian, Guo Shiqin. Discovery of the fi rst active hydrothermal vent fi eld at the ultraslow spreading Southwest Indian Ridge: the Chinese DY115–19 Cruise[J]. InterRidge News, 2007, 16: 25−26. [28] 陶春辉, 李怀明, 黄威, 等. 西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J]. 科学通报, 2011, 56(28/29): 2413−2423.Tao Chunhui, Li Huaiming, Huang Wei, et al. Mineralogical and geochemical features of sulfide chimney from the 49°39′E hydrothermal field on Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56(28/29): 2413−2423. [29] Liao Shili, Tao Chunhui, Jamieson J W, et al. Oxidizing fluids associated with detachment hosted hydrothermal systems: example from the Suye hydrothermal field on the ultraslow-spreading Southwest Indian Ridge[J]. Geochimica et Cosmochimica Acta, 2022, 328: 19−36. doi: 10.1016/j.gca.2022.04.025 [30] Liang Yuyang, Li Jiabiao, Li Shoujun, et al. The morphotectonics and its evolutionary dynamics of the central Southwest Indian Ridge (49° to 51°E)[J]. Acta Oceanologica Sinica, 2013, 32(12): 87−95. doi: 10.1007/s13131-013-0394-1 [31] Zhu Jian, Lin Jian, Chen Y J, et al. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge[J]. Geophysical Research Letters, 2010, 37(18): L18303. [32] Tao Chunhui, Seyfried W E Jr, Lowell R P, et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge[J]. Nature Communications, 2020, 11(1): 1300. doi: 10.1038/s41467-020-15062-w [33] Sugaki A, Shima H, Kitakaze A, et al. Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350 degrees C and 300 degrees C[J]. Economic Geology, 1975, 70(4): 806−823. doi: 10.2113/gsecongeo.70.4.806 [34] 李军, 孙治雷, 黄威, 等. 现代海底热液过程及成矿[J]. 地球科学-中国地质大学学报, 2014, 39(3): 312−324.Li Jun, Sun Zhilei, Huang Wei, et al. Modern seafloor hydrothermal processes and mineralization[J]. Earth Science-Journal of China University of Geosciences, 2014, 39(3): 312−324. [35] Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: a LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761−4791. doi: 10.1016/j.gca.2009.05.045 [36] Zhang Jing, Deng Jun, Chen Huayong, et al. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: implication for ore-forming process[J]. Gondwana Research, 2014, 26(2): 557−575. doi: 10.1016/j.gr.2013.11.003 [37] Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS)[J]. Economic Geology, 2009, 104(8): 1111−1141. doi: 10.2113/gsecongeo.104.8.1111 [38] De Ronde C E J, Massoth G J, Butterfield D A, et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand[J]. Mineralium Deposita, 2011, 46(5): 541−584. [39] Keith M, Haase K M, Klemd R, et al. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus[J]. Chemical Geology, 2016, 423: 7−18. doi: 10.1016/j.chemgeo.2015.12.012 [40] Simon G, Huang Hui, Penner-Hahn J E, et al. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite[J]. American Mineralogist, 1999, 84(7/8): 1071−1079. [41] Reich M, Kesler S E, Utsunomiya S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781−2796. doi: 10.1016/j.gca.2005.01.011 [42] Revan M K, Genç Y, Maslennikov V V, et al. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey)[J]. Ore Geology Reviews, 2014, 63: 129−149. doi: 10.1016/j.oregeorev.2014.05.006 [43] Butler I B, Nesbitt R W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Earth and Planetary Science Letters, 1999, 167(3/4): 335−345. [44] Tivey M K. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction[J]. Geochimica et Cosmochimica Acta, 1995, 59(10): 1933−1949. doi: 10.1016/0016-7037(95)00118-2 [45] Maslennikov V V, Maslennikova S P, Large R R, et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers[J]. Ore Geology Reviews, 2017, 85: 64−106. doi: 10.1016/j.oregeorev.2016.09.012 [46] Gammons C H, Williams-Tones A E. The solubility of Au-Ag alloy + AgCl in HCl/NaCl solutions at 300°C: new data on the stability of Au (1) chloride complexes in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3453−3468. doi: 10.1016/0016-7037(95)00234-Q [47] Widler A M, Seward T M. The adsorption of gold (I) hydrosulphide complexes by iron sulphide surfaces[J]. Geochimica et Cosmochimica Acta, 2002, 66(3): 383−402. doi: 10.1016/S0016-7037(01)00791-8 [48] Williams-Jones A E, Bowell R J, Migdisov A A. Gold in solution[J]. Elements, 2009, 5(5): 281−287. doi: 10.2113/gselements.5.5.281 [49] Benning L G, Seward T M. Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150−400°C and 500−1500 bar[J]. Geochimica et Cosmochimica Acta, 1996, 60(11): 1849−1871. doi: 10.1016/0016-7037(96)00061-0 [50] Gibert F, Pascal M L, Pichavant M. Gold solubility and speciation in hydrothermal solutions: experimental study of the stability of hydrosulphide complex of gold (AuHS) at 350 to 450°C and 500 bars[J]. Geochimica et Cosmochimica Acta, 1998, 62(17): 2931−2947. doi: 10.1016/S0016-7037(98)00209-9 [51] Stefánsson A, Seward T M. Gold (I) complexing in aqueous sulphide solutions to 500°C at 500 bar[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4121−4143. doi: 10.1016/j.gca.2004.04.006 [52] Mann A W. Mobility of gold and silver in lateritic weathering profiles: some observations from Western Australia[J]. Economic Geology, 1984, 79(1): 38−49. doi: 10.2113/gsecongeo.79.1.38 [53] Gammons C H, Williams-Jones A E. Chemical mobility of gold in the porphyry-epithermal environment[J]. Economic Geology, 1997, 92(1): 45−59. doi: 10.2113/gsecongeo.92.1.45 [54] Seward T M, Williams-Jones A E, Migdisov A A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids[J]. Treatise on Geochemistry (Second Edition), 2014, 13: 29−57.