Preliminary study on the food web and potential carbon sources of main consumers in Zhongjieshan Islands sea area in Zhoushan, Zhejiang
-
摘要: 为了解中街山列岛的食物网结构特征,本研究于2020年7月在中街山列岛海域采集鱼类、虾蟹类、头足类、贝螺类和浮游动物等消费者样本,利用碳、氮稳定同位素技术,分析大型海藻、浮游植物、悬浮颗粒有机物(POM)和沉积物有机物(SOM)4种潜在碳源对消费者的贡献率以及中街山列岛海域的食物网结构和营养关系。结果表明:(1)碳源的δ13C值范围在−22.93‰~−9.73‰之间,δ15N值范围在1.72‰~7.68‰之间,消费者的δ13C值范围在−21.95‰~−12.55‰之间,δ15N值范围在4.13‰~12.92‰之间,不同碳源及不同消费者类群之间的碳、氮稳定同位素均有显著性差异(p<0.01);(2)应用SIBER模型计算中街山列岛海域的营养结构指标,与其他海域的研究结果对比发现,该海域生态系统的食源多样性更加丰富,营养级长度和生态位总空间较高;(3)应用SIAR模型计算碳源贡献率,结果表明浮游植物和POM是该海域的重要碳源,平均贡献率为29.63%和28.72%;浮游植物对浮游动物的贡献率最大为80.58%,POM对鱼类的贡献率最大为79.74%;SOM对虾蟹类的贡献率最大为49.94%;大型海藻对消费者的碳源贡献率最低,平均为18.37%;(4)以浮游动物为基线生物计算得知主要消费者的平均营养级在1.58~3.63之间,营养层次为3级,各种类平均营养级由大到小依次为头足类(3.09)、鱼类(3.00)、虾蟹类(2.70)、贝螺类(1.82),中街山列岛海域消费者以低、中级肉食性动物为主,杂食性和高级肉食性动物较少。本研究初步探明了中街山列岛生态系统食物网,为了解该生态系统营养结构奠定了基础,也为今后进一步研究该海域的生态营养动力学提供理论参考。Abstract: In order to understand the characteristics of food web structure in Zhongjieshan Islands, consumer samples of fish, shrimp and crabs, cephalopods, shellfish and zooplankton were collected from Zhongjieshan Islands in July 2020. Based on the carbon and nitrogen stable isotope techniques, the contributions of the four potential carbon sources (macroalgae, phytoplankton, suspended particulate organic matter (POM) and substrate organic matter (SOM)) to consumers, as well as the food web structure and nutritional relationship of the Zhongjieshan Islands were analyzed. The results revealed that the δ13C values of carbon sources ranged from −22.93‰ to −9.73‰, and the δ15N values ranged from 1.72‰ to 7.68‰. The δ13C values of consumers ranged from −21.95‰ to −12.55‰, and the δ15N values of consumers ranged from 4.13‰ to 12.92‰. One-way analysis of variance showed that there were significant differences in carbon and nitrogen stable isotopes among different carbon sources and different groups of consumers (p<0.01). SIBER model was used to analyze the trophic structure indexes of the regional ecosystem of Zhongjieshan Islands. Compared with the research results of other sea areas, it was found that the level of food source diversity (CR), trophic level length (NR) and total niche area (TA) were relatively high. SIAR model was used to calculate the carbon source contribution rate. The results showed that phytoplankton and POM were important carbon sources, with an average contribution rate of 29.63% and 28.72%. The maximum contribution rate of phytoplankton to zooplankton was 80.58%, and the maximum contribution rate of POM to fish was 79.74%; the maximum contribution rate of SOM to shrimp and crab was 49.94%; the carbon source contribution of macroalgae to consumers was the lowest, with an average of 18.37%. The mean trophic level range of the main consumers in Zhongjieshan Islands was 1.58 to 3.63, and the trophic level was 3. The average trophic level from big to small was as follows of cephalopods (3.09), fish (3.00), shrimps and crabs (2.70), shellfish (1.82). The consumers in the waters of Zhongjieshan Islands were mainly low and intermediate carnivores, and there were few omnivores and high carnivores. This study initially constructed the ecosystem food web of Zhongjieshan Islands, which provided reference data for understanding the trophic structure in this area, and also provided theoretical information for further study of the ecosystem.
-
Key words:
- Zhongjieshan Islands /
- food web /
- potential carbon sources /
- trophic level
-
表 1 潜在碳源的δ13C值和δ15N值
Tab. 1 Values of δ13C and δ15N for the potential carbon sources
分类 数量 (δ13C平均值±标准差)/‰ δ13C范围/‰ (δ15N平均值±标准差)/‰ δ15N范围/‰ 大型海藻 30 −16.65±2.33 −20.00~−9.73 4.84±1.37 2.51~7.68 浮游植物 5 −20.59±1.72 −22.93~−18.72 3.08±1.03 1.72~4.35 颗粒有机物(POM) 6 −19.12±1.13 −20.89~−17.33 6.24±0.61 5.44~6.90 底质有机物(SOM) 3 −13.93±0.01 −13.93~−13.82 5.58±0.16 5.47~5.70 表 2 主要消费类群的δ13C值和δ15N值
Tab. 2 Values of δ13C and δ15N for the major consumer groups
分类 数量 (δ13C平均值±标准差)/‰ δ13C范围/‰ (δ15N平均值±标准差)/‰ δ15N范围/‰ 鱼类 93 −16.65±1.19 −21.91~−14.75 9.79±1.07 5.71~12.92 虾蟹类 44 −15.42±1.22 −17.82~−12.55 8.76±1.24 5.97~10.68 头足类 5 −16.28±0.31 −16.67~−16.01 10.07±0.85 8.75~11.10 贝螺类 16 −16.89±1.12 −19.38~−14.76 5.76±0.73 4.13~7.03 浮游动物 13 −17.12±1.38 −19.21~−14.45 6.37±0.71 5.38~7.37 A1 中街山列岛海域主要消费者的体长信息和δ13C、δ15N值
A1 The body length and δ13C, δ15N values of major consumers in Zhongjieshan Islands sea area
分类 种类 体长范围/mm 数量 (δ13C平均值±标准差)/‰ (δ15N平均值±标准差)/‰ 鱼类 小黄鱼Larimichthys polyactis 139~166 5 −17.36±0.46 10.53±0.27 带鱼Trichiurus lepturus 124~155 4 −16.64±0.79 11.25±0.14 龙头鱼Harpodon nehereus 192~235 5 −16.62±0.61 9.78±0.26 竹䇲鱼Trachurus japonicus 127~138 4 −16.79±0.20 10.64±0.10 海鳗Muraenesox cinereus 194~229 3 −16.94±1.05 10.90±0.56 日本鲭Scomber japonicus 146~189 4 −15.86±0.48 10.37±0.49 大黄鱼Larimichthys crocea 107~179 3 −16.78±0.74 10.22±0.38 鳀鱼Engraulis japonicus 56~121 5 −18.46±1.89 8.74±2.40 褐菖鲉Sebastiscus marmoratus 82~180 12 −15.84±0.52 9.30±0.44 斑头六线鱼Agrammus agrammus 78~175 10 −16.78±0.73 8.97±0.70 前肛鳗Dysomma anguillaris 143~222 5 −17.19±0.76 10.56±0.32 黑鲷Acanthopagrus schlegelii 132~191 6 −18.22±1.99 10.47±0.16 食蟹豆齿鳗Pisoodonophis cancrivorus 127 1 −16.74±0 11.58±0 鮸鱼Miichthys miiuy 200~404 3 −16.63±0.24 11.91±1.06 红狼牙虾虎鱼Odontamblyopus rubicundus 90~101 2 −15.13±0.19 9.00±0.07 矛尾虾虎鱼Acanthogobius hasta 40~52 6 −15.61±0.44 8.39±0.54 长吻红舌鳎Cynoglossus lighti 107~198 2 −14.77±0.03 10.12±0.65 绿鳍鱼Chelidonichthys kumu 104~108 2 −15.69±0.63 9.52±0.22 鳄齿鱼Champsodon capensis 78 1 −17.77±0 9.13±0 大眼鲷Priacanthus spp. 131 1 −14.79±0 10.21±0 虻鲉Erisphex pottii 61 1 −17.41±0 8.45±0 刺鲳Psenopsis anomala 147~156 2 −17.44±1.65 10.09±0.23 细刺鱼Microcanthus strigatus 94~124 3 −16.71±0.88 8.89±0.49 横带髭鲷Hapaloyenys mucronatus 113~122 3 −16.25±0.18 8.73±0.45 虾蟹类 哈氏仿对虾Parapenaeopsis hardwickii 76~97 3 −15.65±0.17 9.11±0.49 葛氏长臂虾Palaemon gravieri 71~82 4 −15.75±1.12 9.98±1.02 脊额鞭腕虾Hippolysmata ensirostris 72~79 3 −14.91±0.29 8.93±0.36 细巧仿对虾Parapenaeopsis tenella 52~66 3 −15.60±0.33 9.02±0.67 鲜明鼓虾Alpheus distinguendus 38~51 2 −14.75±0.25 7.64±0.64 日本矶蟹Parapenaeopsis hardwickii 48 1 −14.88±0 8.50±0 菜花银杏蟹Actaea savignyi 55 1 −13.04±0 7.35±0 次锐毛足蟹Lachnopodus subacutus 56~58 2 −13.36±1.16 6.60±0.16 波氏岩瓷蟹Petrolisthes borradailei 41 1 −16.09±0 7.65±0 隆线强蟹Eucrate crenata 35~40 2 −15.07±0.01 6.09±0.13 粗腿厚纹蟹Pachygrapsus crassipes 32 1 −12.83±0 5.97±0 双斑蟳Charybdis bimaculata 71~83 4 −15.47±0.60 9.35±0.37 关公蟹Dorippoidea sp. 29~34 2 −16.56±0.10 7.30±0.03 日本蟳Charybdis japonica 44~83 3 −14.81±0.32 9.10±0.84 绵蟹Dromia dehaani 55~57 2 −14.76±0.32 9.51±0.22 寄居蟹Paguridae spp. 33 1 −15.49±0 8.75±0 三疣梭子蟹Portunus trituberculatus 73~110 5 −16.38±0.57 9.82±0.67 口虾蛄Oratosquilla oratoria 55~123 4 −16.92±1.15 9.71±0.61 头足类 曼氏无针乌贼 Sepiella maindroni 78~123 5 −16.28±0.31 10.07±0.85 贝螺类 黄口荔枝螺Thais luteostoma 21~40 5 −17.60±1.33 5.88±0.72 角蝾螺Turbo cornutus 58~60 2 −16.88±0.57 5.60±0.14 亚洲棘螺Chicoreus asianus 62 1 −14.76±0 6.08±0 西格织纹螺Nassarius siquinjorensis 31 1 −17.39±0 7.03±0 脉红螺Rapana venosa 61~63 3 −16.14±0.84 6.03±0.43 紫贻贝Mytilus edulis 61~78 5 −17.17±0.41 4.94±0.73 表 3 不同区域主要消费者的营养结构指标
Tab. 3 Trophic structure indicators of major consumers in different regions
-
[1] Frederiksen M, Edwards M, Richardson A J, et al. From plankton to top predators: bottom-up control of a marine food web across four trophic levels[J]. Journal of Animal Ecology, 2006, 75(6): 1259−1268. doi: 10.1111/j.1365-2656.2006.01148.x [2] Kaehler S, Pakhomov E A, McQuaid C D. Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by δ13C and δ15N analysis[J]. Marine Ecology Progress Series, 2000, 208: 13−20. doi: 10.3354/meps208013 [3] 刘晓收, 倪大朋, 钟鑫, 等. 黄海大型底栖动物食物网结构和营养关系研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(9): 20−33.Liu Xiaoshou, Ni Dapeng, Zhong Xin, et al. Structure of Benthic food web and trophic relationship of Macrofauna in the Yellow Sea[J]. Periodical of Ocean University of China, 2020, 50(9): 20−33. [4] Weitere M, Scherwass A, Sieben K T, et al. Planktonic food web structure and potential carbon flow in the Lower River Rhine with a focus on the role of protozoans[J]. River Research and Applications, 2005, 21(5): 535−549. doi: 10.1002/rra.825 [5] 李斌, 徐丹丹, 吴迪, 等. 基于C、N同位素技术的河流食物网基础碳源研究进展[J]. 核农学报, 2017, 31(5): 1029−1035. doi: 10.11869/j.issn.100-8551.2017.05.1029Li Bin, Xu Dandan, Wu Di, et al. Research on carbon sources of river food webs based on the carbon and nitrogen stable isotopic technique[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(5): 1029−1035. doi: 10.11869/j.issn.100-8551.2017.05.1029 [6] Zieman J C, Macko S A, Mills A L. Role of seagrasses and mangroves in estuarine food webs: Temporal and spatial changes in stable isotope composition and amino acid content during decomposition[J]. Bulletin of Marine Science, 1984, 35(3): 380−392. [7] 王凯, 章守宇, 汪振华, 等. 枸杞岛海藻场褐菖鲉的摄食习性[J]. 水产学报, 2010, 34(2): 227−235. doi: 10.3724/SP.J.1231.2010.06465Wang Kai, Zhang Shouyu, Wang Zhenhua, et al. Feeding habit of Sebastisous marmoratus in seaweed bed around Gouqi Island[J]. Journal of Fisheries of China, 2010, 34(2): 227−235. doi: 10.3724/SP.J.1231.2010.06465 [8] Peterson B J, Fry B. Stable isotopes in ecosystem studies[J]. Annual Review of Ecology and Systematics, 1987, 18: 293−320. doi: 10.1146/annurev.es.18.110187.001453 [9] Caut S, Angulo E, Courchamp F. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction[J]. Journal of Applied Ecology, 2009, 46(2): 443−453. doi: 10.1111/j.1365-2664.2009.01620.x [10] 谢斌, 李云凯, 张虎, 等. 基于稳定同位素技术的海州湾海洋牧场食物网基础及营养结构的季节性变化[J]. 应用生态学报, 2017, 28(7): 2292−2298.Xie Bin, Li Yunkai, Zhang Hu, et al. Food web foundation and seasonal variation of trophic structure based on the stable isotopic technique in the marine ranching of Haizhou Bay, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2292−2298. [11] Layman C A, Arrington D A, Montaña C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure?[J]. Ecology, 2007, 88(1): 42−48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2 [12] Jackson A L, Inger R, Parnell A C, et al. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R[J]. Journal of Animal Ecology, 2011, 80(3): 595−602. doi: 10.1111/j.1365-2656.2011.01806.x [13] 樊紫薇, 蒋日进, 李哲, 等. 中街山列岛海域鱼卵、仔稚鱼群落结构特征及其与环境因子的关系[J]. 生态学报, 2020, 40(13): 4392−4403.Fan Ziwei, Jiang Rijin, Li Zhe, et al. Community structure of ichthyoplankton and its relationship with environmental factors in Zhongjieshan Islands, China[J]. Acta Ecologica Sinica, 2020, 40(13): 4392−4403. [14] 刘明华, 梁君, 徐汉祥. 中街山列岛海洋保护区虾类优势种时空生态位[J]. 应用生态学报, 2020, 31(5): 1746−1752.Liu Minghua, Liang Jun, Xu Hanxiang. Spatio-temporal niche of dominant shrimp species in the Zhongjieshan Islands Marine Protected Area, China[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1746−1752. [15] 李振华, 蒋日进, 陈峰, 等. 中街山列岛海域浮游植物群落结构的周年变化特征[J]. 浙江海洋学院学报(自然科学版), 2016, 35(4): 299−309.Li Zhenhua, Jiang Rijin, Chen Feng, et al. The annual characteristics of Phytoplankton communities in Zhongjieshan Islands sea area[J]. Journal of Zhejiang Ocean University (Natural Science), 2016, 35(4): 299−309. [16] 刘小雄, 王伟定, 梁君, 等. 中街山列岛岛礁生境游泳动物群落多样性及稳定性分析[J]. 浙江海洋学院学报(自然科学版), 2014, 33(1): 14−18, 30.Liu Xiaoxiong, Wang Weiding, Liang Jun, et al. Nekton community diversity and stability in Zhongjieshan Islands reef Island area[J]. Journal of Zhejiang Ocean University (Natural Science), 2014, 33(1): 14−18, 30. [17] 梁君, 王伟定, 虞宝存, 等. 中街山列岛海洋保护区岛礁生境鱼类资源及群落多样性季节变化[J]. 海洋与湖沼, 2014, 45(5): 979−989. doi: 10.11693/hyhz20130800114Liang Jun, Wang Weiding, Yu Baocun, et al. Seasonal variations of fish resources and community diversity of reef habitat in marine protected area of Zhongjieshan Islands[J]. Oceanologia et Limnologia Sinica, 2014, 45(5): 979−989. doi: 10.11693/hyhz20130800114 [18] 徐军, 王玉玉, 王康, 等. 水域生态学中生物稳定同位素样品采集、处理与保存[J]. 水生生物学报, 2020, 44(5): 989−997. doi: 10.7541/2020.114Xu Jun, Wang Yuyu, Wang Kang, et al. Protocols for sample collection, pretreatment and preservation of aquatic organisms in stable isotope ecology[J]. Acta Hydrobiologica Sinica, 2020, 44(5): 989−997. doi: 10.7541/2020.114 [19] 朱文涛, 秦传新, 马鸿梅, 等. 大亚湾珊瑚礁生态系统简化食物网的稳定同位素[J]. 水产学报, 2020, 44(7): 1112−1123. doi: 10.11964/jfc.20191012005Zhu Wentao, Qin Chuanxin, Ma Hongmei, et al. Stable isotope analysis of simple food web in coral reef ecosystem of Daya Bay[J]. Journal of Fisheries of China, 2020, 44(7): 1112−1123. doi: 10.11964/jfc.20191012005 [20] Zanden M J V, Fetzer W W. Global patterns of aquatic food chain length[J]. Oikos, 2007, 116(8): 1378−1388. doi: 10.1111/j.0030-1299.2007.16036.x [21] Post D M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703−718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 [22] 赵永松, 单秀娟, 杨涛, 等. 庙岛群岛毗邻海域秋季底栖食物网潜在碳来源贡献及对碳汇渔业的思考[J]. 渔业科学进展, 2022, 43(5): 132−141.Zhao Yongsong, Shan Xiujuan, Yang Tao, et al. Contributions of carbon sources to food webs adjacent to the Miaodao archipelago and their implications for carbon sink fisheries[J]. Progress in Fishery Sciences, 2022, 43(5): 132−141. [23] 陆亚楠, 张瑞, 张虎, 等. 应用稳定同位素技术研究江苏近海食物网营养结构的季节性变化[J]. 海洋学报, 2022, 44(2): 1−10.Lu Ya’nan, Zhang Rui, Zhang Hu, et al. Seasonal variation in the trophic structure of food webs in coastal waters of Jiangsu Province based on stable isotope techniques[J]. Haiyang Xuebao, 2022, 44(2): 1−10. [24] 纪炜炜, 李圣法, 陈雪忠, 等. 基于稳定同位素方法的东海北部及其邻近水域主要游泳动物营养结构变化[J]. 海洋渔业, 2015, 37(6): 494−500. doi: 10.3969/j.issn.1004-2490.2015.06.002Ji Weiwei, Li Shengfa, Chen Xuezhong, et al. Variation in trophic structure of nekton organisms from the northern East China Sea and adjacent waters based on stable isotope values[J]. Marine Fisheries, 2015, 37(6): 494−500. doi: 10.3969/j.issn.1004-2490.2015.06.002 [25] 尹洪洋, 朱文涛, 马文刚, 等. 三亚蜈支洲岛海洋牧场区域夏季食物网研究[J]. 生态学报, 2022, 42(8): 3241−3253.Yin Hongyang, Zhu Wentao, Ma Wengang, et al. The summer food web in the marine ranch area of Wuzhizhou Island in Sanya, Hainan[J]. Acta Ecologica Sinica, 2022, 42(8): 3241−3253. [26] 韦晟, 姜卫民. 黄海鱼类食物网的研究[J]. 海洋与湖沼, 1992, 23(2): 182−192.Wei Sheng, Jiang Weimin. Study on food web of fishes in the Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1992, 23(2): 182−192. [27] 张靖凡, 蔡恒江, 赵玥茹, 等. 獐子岛岩相潮间带大型海藻有机碳含量及δ13C值的季节变化特征[J]. 海洋科学, 2020, 44(2): 56−65. doi: 10.11759/hykx20190829002Zhang Jingfan, Cai Hengjiang, Zhao Yueru, et al. Seasonal variation in the total organic carbon contents and the δ13C values of macroalgae in the rocky intertidal zone of the Zhangzi Island[J]. Marine Sciences, 2020, 44(2): 56−65. doi: 10.11759/hykx20190829002 [28] 吴莹, 张经, 张再峰, 等. 长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J]. 海洋与湖沼, 2002, 33(5): 546−552. doi: 10.3321/j.issn:0029-814X.2002.05.012Wu Ying, Zhang Jing, Zhang Zaifeng, et al. Seasonal variability of stable carbon and nitrogen isotope of suspended particulate matter in the Changjiang River[J]. Oceanologia et Limnologia Sinica, 2002, 33(5): 546−552. doi: 10.3321/j.issn:0029-814X.2002.05.012 [29] 李敏, 张继红, 吴文广, 等. 獐子岛邻近海域悬浮颗粒物的时空分布特性[J]. 渔业科学进展, 2018, 39(1): 54−63. doi: 10.11758/yykxjz.20170107001Li Min, Zhang Jihong, Wu Wenguang, et al. The spatial-temporal distribution of the suspended particulate matter in the water adjacent to the Zhangzidao Island[J]. Progress in Fishery Sciences, 2018, 39(1): 54−63. doi: 10.11758/yykxjz.20170107001 [30] Miyatake T, Moerdijk-Poortvliet T C W, Stal L J, et al. Tracing carbon flow from microphytobenthos to major bacterial groups in an intertidal marine sediment by using an in situ 13C pulse-chase method[J]. Limnology and Oceanography, 2014, 59(4): 1275−1287. doi: 10.4319/lo.2014.59.4.1275 [31] 吴程宏, 章守宇, 周曦杰, 等. 岛礁海藻场沉积有机物来源辨析[J]. 水产学报, 2017, 41(8): 1246−1255. doi: 10.11964/jfc.20160310310Wu Chenghong, Zhang Shouyu, Zhou Xijie, et al. Identifying sources of sedimentary organic matter in the rocky reef seaweed bed[J]. Journal of Fisheries of China, 2017, 41(8): 1246−1255. doi: 10.11964/jfc.20160310310 [32] Davenport S R, Bax N J. A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(3): 514−530. doi: 10.1139/f02-031 [33] 高春霞, 戴小杰, 田思泉, 等. 基于稳定同位素技术的浙江南部近海主要渔业生物营养级[J]. 中国水产科学, 2020, 27(4): 438−453.Gao Chunxia, Dai Xiaojie, Tian Siquan, et al. Trophic structure of major fishery organisms in the offshore waters of southern Zhejiang: insights from stable isotope analysis[J]. Journal of Fishery Sciences of China, 2020, 27(4): 438−453. [34] Hobson K A, Piatt J F, Pitocchelli J. Using stable isotopes to determine seabird trophic relationships[J]. Journal of Animal Ecology, 1994, 63(4): 786−798. doi: 10.2307/5256 [35] 魏虎进, 朱小明, 纪雅宁, 等. 基于稳定同位素技术的象山港海洋牧场区食物网基础与营养级的研究[J]. 应用海洋学学报, 2013, 32(2): 250−257. doi: 10.3969/J.ISSN.2095-4972.2013.02.015Wei Hujin, Zhu Xiaoming, Ji Yaning, et al. Study on the food web structure and their trophic levels of marine ranching area in Xiangshan Harbor[J]. Journal of Applied Oceanography, 2013, 32(2): 250−257. doi: 10.3969/J.ISSN.2095-4972.2013.02.015 [36] 张传鑫, 陈静, 纪莹璐, 等. 基于碳氮稳定同位素技术的小清河口邻近海域底栖食物网结构研究[J]. 海洋学报, 2022, 44(1): 89−100.Zhang Chuanxin, Chen Jing, Ji Yinglu, et al. Benthic food web structure of Xiaoqing river estuary adjacent sea area revealed by carbon and nitrogen stable isotope analysis[J]. Haiyang Xuebao, 2022, 44(1): 89−100. [37] 党承林, 黄瑞复. 生态系统的冗余与营养结构模型[J]. 生态学杂志, 1997, 16(4): 39−46. doi: 10.3321/j.issn:1000-4890.1997.04.009Dang Chenglin, Huang Ruifu. Redundancy in ecosystems and the model for trophic structure[J]. Chinese Journal of Ecology, 1997, 16(4): 39−46. doi: 10.3321/j.issn:1000-4890.1997.04.009 [38] 蔡德陵, 孟凡, 韩贻兵, 等. 13C/12C比值作为海洋生态系统食物网示踪剂的研究——崂山湾水体生物食物网的营养关系[J]. 海洋与湖沼, 1999, 30(6): 671−678. doi: 10.3321/j.issn:0029-814X.1999.06.015Cai Deling, Meng Fan, Han Yibing, et al. Studies on 13C/12C ratios as tracer for food web in a marine ecosystem — the trophic relations in pelagic food webs in Laoshan Bay[J]. Oceanologia et Limnologia Sinica, 1999, 30(6): 671−678. doi: 10.3321/j.issn:0029-814X.1999.06.015 [39] 莫宝霖, 秦传新, 陈丕茂, 等. 基于碳、氮稳定同位素技术的大亚湾紫海胆食性分析[J]. 中国水产科学, 2017, 24(3): 566−575. doi: 10.3724/SP.J.1118.2017.16278Mo Baolin, Qin Chuanxin, Chen Pimao, et al. Feeding habits of the purple sea urchin Heliocidaris crassisipina based on stable carbon and nitrogen isotope analysis[J]. Journal of Fishery Sciences of China, 2017, 24(3): 566−575. doi: 10.3724/SP.J.1118.2017.16278 [40] 贡艺, 陈玲, 李云凯. 海洋生态系统稳定同位素基线的选取[J]. 应用生态学报, 2017, 28(7): 2399−2404. doi: 10.13287/j.1001-9332.201707.006Gong Yi, Chen Ling, Li Yunkai. Selection of isotopic baselines in marine ecosystems[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2399−2404. doi: 10.13287/j.1001-9332.201707.006 [41] 郭新, 范广钻, 郏国生. 浙江近海曼氏无针乌贼食性的初步研究[J]. 浙江水产学院学报, 1986, 5(2): 171−175.Guo Xin, Fan Guangzuan, Jia Guosheng. A preliminary study of the feeding habit of Sepiella maindroni de rochebrune[J]. Journal of Zhejiang College of Fisheries, 1986, 5(2): 171−175. [42] 蔡德陵, 李红燕, 唐启升, 等. 黄东海生态系统食物网连续营养谱的建立: 来自碳氮稳定同位素方法的结果[J]. 中国科学 C辑: 生命科学, 2005, 48(6): 531−539. doi: 10.1360/04yc0136Cai Deling, Li Hongyan, Tang Qisheng, et al. Establishment of trophic continuum in the food web of the Yellow Sea and East China Sea ecosystem: insight from carbon and nitrogen stable isotopes[J]. Science in China Series C: Life Sciences, 2005, 48(6): 531−539. doi: 10.1360/04yc0136 [43] 张家旭, 张云雷, 刘淑德, 等. 山东近海矛尾虾虎鱼生物学特征及其季节变化[J]. 中国海洋大学学报(自然科学版), 2021, 51(7): 122−130.Zhang Jiaxu, Zhang Yunlei, Liu Shude, et al. The biological characteristics and seasonal variations of Chaeturichthys stigmatias inhabiting the coastal waters of Shandong Province[J]. Periodical of Ocean University of China, 2021, 51(7): 122−130. [44] 高世科, 孙文, 张硕. 基于稳定同位素方法的吕泗渔场近岸海域主要生物潜在碳源及营养级分析[J]. 海洋学报, 2021, 43(6): 71−80.Gao Shike, Sun Wen, Zhang Shuo. The potential carbon source and trophic level analysis of main organisms in coastal water of Lüsi fishing ground, based on carbon and nitrogen stable isotope analysis[J]. Haiyang Xuebao, 2021, 43(6): 71−80. [45] 陈玲, 王凯, 周曦杰, 等. 岛礁水域海藻场食物网基准生物的选择[J]. 海洋渔业, 2016, 38(4): 364−373. doi: 10.3969/j.issn.1004-2490.2016.04.003Chen Ling, Wang Kai, Zhou Xijie, et al. Investigation on food web’s isotopic baseline in typical reef ecosystem-seaweed bed[J]. Marine Fisheries, 2016, 38(4): 364−373. doi: 10.3969/j.issn.1004-2490.2016.04.003