留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绿鲍(Haliotis fulgens)线粒体基因组全序列测定及分析

郭睿 张善霹 蔡雷鸣 杨小强 王伟 江小斌 林钦 林枫 林哲龙

郭睿,张善霹,蔡雷鸣,等. 绿鲍(Haliotis fulgens)线粒体基因组全序列测定及分析[J]. 海洋学报,2023,45(5):64–78 doi: 10.12284/hyxb2023050
引用本文: 郭睿,张善霹,蔡雷鸣,等. 绿鲍(Haliotis fulgens)线粒体基因组全序列测定及分析[J]. 海洋学报,2023,45(5):64–78 doi: 10.12284/hyxb2023050
Guo Rui,Zhang Shanpi,Cai Leiming, et al. Sequencing and analysis of the complete mitochondrial genome of green abalone (Haliotis fulgens)[J]. Haiyang Xuebao,2023, 45(5):64–78 doi: 10.12284/hyxb2023050
Citation: Guo Rui,Zhang Shanpi,Cai Leiming, et al. Sequencing and analysis of the complete mitochondrial genome of green abalone (Haliotis fulgens)[J]. Haiyang Xuebao,2023, 45(5):64–78 doi: 10.12284/hyxb2023050

绿鲍(Haliotis fulgens)线粒体基因组全序列测定及分析

doi: 10.12284/hyxb2023050
基金项目: 福州海洋研究院项目(2021F12);福建省科技厅项目(2021S0010)。
详细信息
    作者简介:

    郭睿(1986-),男,河北省石家庄市人,高级农艺师,从事水生动物遗传和疫病研究。E-mail:ariesgreen86@hotmail.com

    通讯作者:

    张善霹(1969-),男,高级工程师,主要从事水产养殖技术研究。E-mail:309468990@qq.com

  • 中图分类号: P735;Q959.212

Sequencing and analysis of the complete mitochondrial genome of green abalone (Haliotis fulgens)

  • 摘要: 为高效鉴别鲍属物种和更好地管理和保护鲍种质资源,本研究通过高通量测序获得了养殖绿鲍(Haliotis fulgens)稚贝的线粒体基因组全序列,并对其序列和结构特征进行分析。结果表明,绿鲍线粒体基因组全长17 041 bp,含有37个编码基因,其中蛋白质编码基因13个、tRNA基因22个、rRNA基因2个。13个蛋白质编码基因均以AUG为起始密码子,以UAG或UAA为终止密码子。除tRNA-Ser(AGN)外的21个tRNA基因可折叠成典型三叶草结构。分析发现tRNA-Glu和COX3间存在富含A+T的非编码区,其内含有2个带回文序列的发卡结构。基于已报道的10个鲍属线粒体基因组全序列构建系统发育树,发现绿鲍与皱纹盘鲍(Haliotis discus hannai)、红鲍(Haliotis rufescens)、黑鲍(Haliotis cracherodii)聚为一支。将绿鲍与皱纹盘鲍13个线粒体编码蛋白的结构域比较,发现二者ND2ND4的跨膜结构域数量存在差异,这是否与二者的高温耐受性差异有关,有待进一步研究。总之,绿鲍线粒体基因组全序列的首次获取和分析,丰富了鲍类细胞遗传信息,为分类、种质鉴定与种质资源保护提供了基础数据和参考。
  • 图  1  鲍属cytB基因NJ系统发育树

    Fig.  1  Phylogenetic tree based on the neighbor-joining (NJ) analysis of the cytB genes of Haliotis spp.

    图  2  绿鲍线粒体基因组结构

    Fig.  2  Mitochondrial genome structure of Haliotis fulgens

    图  3  绿鲍线粒体编码基因及非编码基因排列图

    Fig.  3  The mitochondrial coding and non-coding genes arrangement diagram of Haliotis fulgens

    图  4  绿鲍特殊tRNA基因二级结构

    Fig.  4  The unusual secondary structures of the tRNA genes in Haliotis fulgens

    图  5  绿鲍线粒体控制区序列及结构特征示意图

    下划线表示存在回文序列的两个发卡结构序列,下方为对应的发卡结构

    Fig.  5  Schematic map of the control region sequences and characteristics of Haliotis fulgens

    Underline shows the sequences of two hairpin structures containing palindromes and bottom is the corresponding hairpin structures

    图  6  鲍属线粒体基因组NJ系统发育树

    Fig.  6  Phylogenetic tree based on the neighbor-joining (NJ) analysis of Haliotis genus whole mitochondrial genomes

    图  7  绿鲍与皱纹盘鲍线粒体蛋白质氨基酸序列相似性及二级结构比较

    Fig.  7  Comparison of amino acid sequence identity and secondary structure of mitochondrial proteins between Haliotis fulgens and Haliotis discus hannai

    表  1  已报道鲍属贝类线粒体基因组

    Tab.  1  The complete mitochondrial genomes reported of Haliotis genus for analysis

    物种长度/bpGC含量/%GenBank登录号
    皱纹盘鲍(Haliotis discus hannai16 88639.6KF724723.1
    黑足鲍(Haliotis iris17 13140.2KU310895.1
    黑唇鲍(Haliotis rubra16 90740.9AY588938.1
    绿唇鲍(Haliotis laevigata16 54542.2KJ472483.1
    欧洲疣鲍(Haliotis tuberculata15 93839.5FJ605488.1
    杂色鲍(Haliotis diversicolor16 54340.1MZ465525.1
    羊鲍(Haliotis ovina16 53140.7NC056350.1
    红鲍(Haliotis rufescens16 64639.7NC036928.1
    黑鲍(Haliotis cracherodii18 39137.7CM039063.1
    下载: 导出CSV

    表  2  绿鲍线粒体基因组注释结果

    Tab.  2  The results of the complete mitochondrial genome annotation for Haliotis fulgens

    基因长度/bp定位间隔区/bp反密码子密码子编码链
    起始位点终止位点起始密码子终止密码子
    COX378017800AUGUAAH
    trnD7381288431GUCH
    trnK72884955−1UUUH
    trnA699511 019−5UGCH
    trnR661 0211 0861UCGH
    trnI701 0991 16812GAUH
    ND33541 1711 5242AUGUAAH
    trnN711 5371 60712GUUH
    trnS671 6111 6773GCUH
    ND21 0951 6812 7753 AUGUAAH
    COX11 5422 7954 33619 AUGUAAH
    COX26964 3755 07038 AUGUAGH
    ATP81655 1555 31984AUGUAAH
    ATP66965 3746 06954 AUGUAAH
    trnF686 1136 18043GAAL
    ND51 7406 1957 93414AUGUAAL
    trnH687 9358 0020GUGL
    ND41 2338 0509 28247 AUGUAAL
    ND4L3009 4389 737155 AUGUAGL
    trnT709 7629 83124UGUH
    trnS679 8589 92426UGAL
    CYTB1 1409 93711 07612 AUGUAGL
    ND650711 11411 62037AUGUAGL
    trnP6711 62111 6870UGGL
    ND194511 71012 65422 AUGUAGL
    trnL6812 65612 7231UAAL
    trnL6812 81412 88190UAGL
    16S1 40012 89814 29716 L
    trnV6614 39014 45592AACL
    12S1 03314 46915 50113 L
    trnM7015 51615 58514CAUL
    trnY6815 58815 6552GUAL
    trnC7015 66415 7338GCAL
    trnW7315 73715 8093UCAL
    trnQ7015 82015 88910UUGL
    trnG6815 89215 9592UCCL
    trnE6815 96416 0314UUCL
    注:trn表示rRNA,后面的大写字母表示该tRNA转运的氨基酸;16S12S为rRNA基因;−代表无密码子。
    下载: 导出CSV

    表  3  鲍属线粒体基因组碱基组成

    Tab.  3  Composition and skewness in the mitochondrial genomes of Haliotis genus species

    物种碱基组成/%AT偏移GC偏移
    ATCGA+T
    线粒体全基因组
    绿鲍 Haliotis fulgens36.224.426.512.960.60.195−0.345
    皱纹盘鲍 Haliotis discus hannai35.425.026.113.560.40.172−0.318
    黑足鲍 Haliotis iris35.923.926.813.459.80.201−0.333
    黑唇鲍 Haliotis rubra34.624.526.714.259.10.171−0.306
    绿唇鲍 Haliotis laevigata23.933.914.927.357.8−0.1730.294
    欧洲疣鲍 Haliotis tuberculata34.825.725.813.660.50.150−0.310
    杂色鲍 Haliotis diversicolor35.224.726.413.759.90.175−0.317
    羊鲍 Haliotis ovina34.824.527.413.459.30.174−0.343
    红鲍 Haliotis rufescens35.424.925.913.760.30.174−0.308
    黑鲍 Haliotis cracherodii26.635.713.524.262.3−0.1460.284
    蛋白质编码基因
    绿鲍 Haliotis fulgens23.436.319.121.259.7−0.2160.052
    皱纹盘鲍 Haliotis discus hannai23.436.319.221.159.7−0.2160.047
    黑足鲍 Haliotis iris22.536.019.621.958.5−0.2310.055
    黑唇鲍 Haliotis rubra22.335.119.922.657.4−0.2230.064
    绿唇鲍 Haliotis laevigata22.234.520.422.856.7−0.2170.056
    欧洲疣鲍 Haliotis tuberculata23.736.118.921.359.8−0.2070.060
    杂色鲍 Haliotis diversicolor23.235.919.121.859.1−0.2150.066
    羊鲍 Haliotis ovina22.635.819.322.258.4−0.2260.070
    红鲍 Haliotis rufescens23.536.019.321.259.5−0.2100.047
    黑鲍 Haliotis cracherodii23.235.919.421.659.1−0.2150.054
    tRNA基因
    绿鲍 Haliotis fulgens28.131.016.924.059.1−0.0500.174
    皱纹盘鲍 Haliotis discus hannai28.230.517.324.058.7−0.0390.162
    黑足鲍 Haliotis iris27.630.617.524.358.2−0.0520.163
    黑唇鲍 Haliotis rubra27.530.417.424.857.9−0.0500.175
    绿唇鲍 Haliotis laevigata27.330.717.124.958.0−0.0590.186
    欧洲疣鲍 Haliotis tuberculata28.731.017.023.359.7−0.0390.156
    杂色鲍 Haliotis diversicolor27.230.817.224.958.0−0.0620.183
    羊鲍 Haliotis ovina27.531.217.024.458.7−0.0630.179
    红鲍 Haliotis rufescens28.330.517.423.858.8−0.0370.155
    黑鲍 Haliotis cracherodii28.030.817.124.158.8−0.0480.170
    rRNA基因
    绿鲍 Haliotis fulgens26.135.113.425.461.2−0.1470.309
    皱纹盘鲍 Haliotis discus hannai27.235.213.124.562.4−0.1280.303
    黑足鲍 Haliotis iris25.835.712.925.661.5−0.1610.330
    黑唇鲍 Haliotis rubra26.234.913.625.361.1−0.1420.301
    绿唇鲍 Haliotis laevigata26.333.914.325.660.2−0.1260.283
    欧洲疣鲍 Haliotis tuberculata28.034.413.224.462.4−0.1030.298
    杂色鲍 Haliotis diversicolor27.135.113.224.562.2−0.1290.300
    羊鲍 Haliotis ovina25.834.613.526.160.4−0.1460.318
    红鲍 Haliotis rufescens27.334.913.324.562.2−0.1220.296
    黑鲍 Haliotis cracherodii27.135.013.324.662.1−0.1270.298
    假定控制区
    绿鲍 Haliotis fulgens37.629.424.68.467.00.122−0.491
    下载: 导出CSV

    表  4  绿鲍13个蛋白质编码基因密码子平均使用频率

    Tab.  4  Total codon average usage in the thirteen protein coding genes for Haliotis fulgens

    密码子数量使用率密码子数量使用率密码子数量使用率密码子数量使用率
    UCU(S)952.11GUU(V)1271.60ACU(T)671.48CAA(Q)441.19
    UCC(S)581.29GUA(V)750.94ACA(T)661.46CAG(Q)300.81
    UCA(S)521.15GUG(V)740.93ACC(T)360.80CAU(H)461.15
    AGU(S)501.11GUC(V)420.53ACG(T)120.27CAC(H)340.85
    AGG(S)380.84UUA(L)1511.56UUU(T)2161.38AAA(K)461.12
    AGA(S)340.75UUG(L)1481.53UUC(T)980.62AAG(K)360.88
    AGC(S)180.40CUA(L)1151.19UAU(Y)861.33UGA(W)601.10
    UCG(S)160.35CUU(L)740.77UAC(Y)430.67UGG(W)490.90
    CGA(R)291.81CUC(L)590.61GGA(G)921.31GAA(E)501.10
    CGU(R)191.19CUG(L)330.34GGG(G)921.31GAG(E)410.90
    CGG(R)90.56GCU(A)941.55GGU(G)690.99GAC(D)401.08
    CGC(R)70.44GCC(A)631.04GGC(G)270.39GAU(D)340.92
    CCA(P)611.64GCA(A)580.96AAU(N)771.29AUG(M)881.05
    CCU(P)521.40GCG(A)270.45AAC(N)420.71AUA(M)800.95
    CCG(P)200.54UGU(C)451.50AUU(I)1451.19UAA81.23
    CCC(P)160.43UGC(C)150.50AUC(I)980.81UAG50.77
    注:黑体表示偏好密码子。
    下载: 导出CSV

    表  5  基于线粒体全序列的10种鲍种间核酸相似性

    Tab.  5  Nucleotide sequence identity among 10 species of abalone based on whole mitochondrial genome

    物种核酸相似性/%
    绿鲍 Haliotis fulgens100
    皱纹盘鲍 Haliotis discus hannai89.15100
    黑足鲍 Haliotis iris82.8683.41100
    黑唇鲍 Haliotis rubra80.9480.9780.73100
    绿唇鲍 Haliotis laevigata80.8080.6680.2391.89100
    欧洲疣鲍 Haliotis tuberculata81.5181.3981.3283.8483.37100
    杂色鲍 Haliotis diversicolor81.0380.7780.1683.0982.8082.59100
    羊鲍 Haliotis ovina80.1079.9579.0682.1481.9281.3681.54100
    红鲍 Haliotis rufescens88.1690.9483.4181.5181.1281.6181.5980.75100
    黑鲍 Haliotis cracherodii87.9090.0383.4681.2580.9881.1980.6480.5591.62100
    下载: 导出CSV
  • [1] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022.

    Fishery and Fishery Administration of the Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. 2022 China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, 2022.
    [2] Franchini P, Slabbert R, Merwe M V D, et al. Karyotype and genome size estimation of Haliotis midae: estimators to assist future studies on the evolutionary history of Haliotidae[J]. Journal of Shellfish Research, 2010, 29(4): 945−950. doi: 10.2983/035.029.0428
    [3] Geiger D L. Distribution and biogeography of the recent Haliotidae (Gastropoda: Vetigastropoda) world-wide[J]. Bollettino Malacologico, 1999, 35: 57−118.
    [4] 赖龙玉, 严正凛. 鲍遗传育种研究进展[J]. 福建农业学报, 2013, 28(12): 1303−1309. doi: 10.3969/j.issn.1008-0384.2013.12.023

    Lai Longyu, Yan Zhenglin. Advances in genetics and breeding of abalone[J]. Fujian Journal of Agricultural Sciences, 2013, 28(12): 1303−1309. doi: 10.3969/j.issn.1008-0384.2013.12.023
    [5] 王子臣. 红鲍、绿鲍引种初步成功[J]. 大连水产学院学报, 1986(6): 93−94.

    Wang Zichen. Transplantations of American abalones, Haliotis rufescens and H. fulgens from U. S. A. to China[J]. Journal of Dalian Fisheries University, 1986(6): 93−94.
    [6] 许国领, 劳赞, 杨小立. 美国绿鲍驯育和人工育苗[J]. 热带海洋, 1989, 8(3): 75−81.

    Xu Guoling, Lao Zan, Yang Xiaoli. A preliminary summary on the climatization and seed culture of green abalone[J]. Journal of Tropical Oceanography, 1989, 8(3): 75−81.
    [7] 范飞龙. 绿鲍的引种及与皱纹盘鲍的种间杂交研究[D]. 厦门: 厦门大学, 2012.

    Fan Feilong. The introduction of Haliotis fulgens and the research of hybridization between Haliotis fulgens and Haliotis discus hannai[D]. Xiamen: Xiamen University, 2012.
    [8] 郭勍. 皱纹盘鲍与绿鲍杂交、回交后代的分子鉴定及性腺发育的初步研究[D]. 厦门: 厦门大学, 2015.

    Guo Qing. Molecular identification of Haliotis discus hannai, Haliotis fulgens and their hybrids and backcross and the preliminary research of gonadal development of them[D]. Xiamen: Xiamen University, 2015.
    [9] You Weiwei, Guo Qing, Fan Feilong, et al. Experimental hybridization and genetic identification of Pacific abalone Haliotis discus hannai and green abalone H. fulgens[J]. Aquaculture, 2015, 448: 243−249. doi: 10.1016/j.aquaculture.2015.05.043
    [10] Jex A R, Hall R S, Littlewood D T J, et al. An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes[J]. Nucleic Acids Research, 2010, 38(2): 522−533. doi: 10.1093/nar/gkp883
    [11] Robinson N A, Hall N E, Ross E M, et al. The complete mitochondrial genome of Haliotis laevigata (Gastropoda: Haliotidae) using MiSeq and HiSeq sequencing[J]. Mitochondrial DNA Part A, 2016, 27(1): 437−438. doi: 10.3109/19401736.2014.900611
    [12] Yang E C, Nam B H, Noh S J, et al. Complete mitochondrial genome of Pacific abalone (Haliotis discus hannai) from Korea[J]. Mitochondrial DNA, 2015, 26(6): 917−918. doi: 10.3109/19401736.2013.863289
    [13] 张国范, 常亚青, 赵艳. 海洋动物线粒体DNA研究进展[J]. 海洋科学, 1997(1): 25−28.

    Zhang Guofan, Chang Yaqing, Zhao Yan. A perspective of mitochondrial DNA research in marine animals[J]. Marine Sciences, 1997(1): 25−28.
    [14] 周传江, 马爱喆, 汪曦, 等. 鱼类线粒体基因组研究进展[J]. 河南师范大学学报(自然科学版), 2019, 47(2): 74−82. doi: 10.16366/j.cnki.1000-2367.2019.02.012

    Zhou Chuanjiang, Ma Aizhe, Wang Xi, et al. Progress on fish mitochondrial genome[J]. Journal of Henan Normal University (Natural Science Edition), 2019, 47(2): 74−82. doi: 10.16366/j.cnki.1000-2367.2019.02.012
    [15] 梁日深, 杨杰銮, 谢瑞琳, 等. 巨石斑鱼与斜带石斑鱼线粒体基因组测序及物种有效性分析[J]. 中国海洋大学学报(自然科学版), 2022, 52(6): 50−61.

    Liang Rishen, Yang Jieluan, Xie Ruilin, et al. Complete mitochondrial genomes of Epinephelus tauvina and E. coioides and their species validity[J]. Periodical of Ocean University of China, 2022, 52(6): 50−61.
    [16] 朱雷宇, 朱志煌, 朱陇强, 等. 龙虾科物种线粒体基因组特征和系统发育分析[J]. 中国水产科学, 2022, 29(4): 525−534.

    Zhu Leiyu, Zhu Zhihuang, Zhu Longqiang, et al. Characteristics and phylogenetic analysis of the mitochondrial genome in Palinuridae[J]. Journal of Fishery Sciences of China, 2022, 29(4): 525−534.
    [17] 李加爱, 陈丽彬, 柳斌彬, 等. 钝齿蟳线粒体基因组全序列测定及系统发育分析[J]. 浙江海洋大学学报(自然科学版), 2021, 40(3): 198−208.

    Li Jiaai, Chen Libin, Liu Binbin, et al. The complete mitochondrial genome of Charybdis hellerii (Brachyura: Portunidae) and phylogenetic analysis[J]. Journal of Zhejiang Ocean University (Natural Science), 2021, 40(3): 198−208.
    [18] 颜成瑞, 苗菁, 叶莹莹. 14种帘蛤科贝类线粒体基因组特征与系统进化分析[J]. 浙江海洋大学学报(自然科学版), 2021, 40(4): 285−292.

    Yan Chengrui, Miao Jing, Ye Yingying. Mitochondrial genomic characteristics and phylogenetic analysis of 14 species of Veneridae[J]. Journal of Zhejiang Ocean University (Natural Science), 2021, 40(4): 285−292.
    [19] 史宝, 柳学周, 刘永山, 等. 黄条鰤线粒体全基因组测序及结构特征分析[J]. 中国水产科学, 2019, 26(3): 405−415. doi: 10.3724/SP.J.1118.2019.18365

    Shi Bao, Liu Xuezhou, Liu Yongshan, et al. Complete sequence and gene organization of the mitochondrial genome of Seriola aureovittata[J]. Journal of Fishery Sciences of China, 2019, 26(3): 405−415. doi: 10.3724/SP.J.1118.2019.18365
    [20] 毛明光, 顾杰, 刘瑞婷, 等. 太平洋鳕线粒体全基因组测序及结构特征分析[J]. 水生生物学报, 2019, 43(1): 17−26. doi: 10.7541/2019.003

    Mao Mingguang, Gu Jie, Liu Ruiting, et al. Analysis of complete mitochondrial genome sequences of Gadus macrocephalus[J]. Acta Hydrobiologica Sinica, 2019, 43(1): 17−26. doi: 10.7541/2019.003
    [21] 杜诗雨, 张康琴, 潘达, 等. 格氏束腰蟹(Somanniathelphusa grayi)的线粒体基因组序列测定和基因顺序进化研究[J]. 南京师大学报(自然科学版), 2022, 45(1): 86−95.

    Du Shiyu, Zhang Kangqin, Pan Da, et al. The mitochondrial genome of Somanniathelphusa grayi and the evolution of gene order[J]. Journal of Nanjing Normal University (Natural Science Edition), 2022, 45(1): 86−95.
    [22] 韩振勇. 丽蚌属线粒体基因组双单亲遗传研究与淡水蚌系统进化分析[D]. 上海: 上海海洋大学, 2016.

    Han Zhenyong. Research of DUI in lamprotula mtDNA and phylogenomics analysis of unionoida[D]. Shanghai: Shanghai Ocean University, 2016.
    [23] Zhong Shengping, Huang Guoqiang, Liu Yonghong, et al. The complete mitochondrial genome of marine gastropod Melo melo (Neogastropoda: Volutoidea)[J]. Mitochondrial DNA Part B, 2019, 4(2): 4161−4162. doi: 10.1080/23802359.2019.1693293
    [24] Maynard B T, Kerr L J, Mckiernan J M, et al. Mitochondrial DNA sequence and gene organization in the Australian blacklip abalone Haliotis rubra (Leach)[J]. Marine Biotechnology, 2005, 7(6): 645−658. doi: 10.1007/s10126-005-0013-z
    [25] Van Wormhoudt A, Le Bras Y, Huchette S. Haliotis marmorata from Senegal; a sister species of Haliotis tuberculata: morphological and molecular evidence[J]. Biochemical Systematics and Ecology, 2009, 37(6): 747−755. doi: 10.1016/j.bse.2009.12.020
    [26] Xin Yi, Ren Jianfeng, Liu Xiao. Mitogenome of the small abalone Haliotis diversicolor Reeve and phylogenetic analysis within Gastropoda[J]. Marine Genomics, 2011, 4(4): 253−262. doi: 10.1016/j.margen.2011.06.005
    [27] Guo Zhansheng, Ding Yi, Han Leng, et al. Characterization of the complete mitochondrial genome of Pacific abalone Haliotis discus hannai[J]. Mitochondrial DNA Part B, 2019, 4(1): 717−718. doi: 10.1080/23802359.2018.1495125
    [28] 房孝宁. 皱纹盘鲍、黑足鲍及杂交F1代线粒体基因组测序及系统发育价值的研究[D]. 威海: 山东大学, 2016.

    Fang Xiaoning. Research on sequencing of mitogenome and phylogenetic analysis within Haliotis discus hannai Ino, Haliotis iris martyn and hybrid F1[D]. Weihai: Shandong University, 2016.
    [29] 逯峰. 羊鲍线粒体全基因组序列测定及幼体附着影响因素的分析[D]. 海口: 海南大学, 2020.

    Lu Feng. Sequencing and analysis of complete mitochondrial genome of Haliotis ovina[D]. Haikou: Hainan University, 2020.
    [30] Gutiérrez-Gonzalez J L, Cruz P, Rio-Portilla M A D, et al. Genetic structure of green abalone Haliotis fulgens population off Baja California, Mexico[J]. Journal of Shellfish Research, 2007, 26(3): 839−846. doi: 10.2983/0730-8000(2007)26[839:GSOGAH]2.0.CO;2
    [31] Mejía-Ruíz P, Perez-Enriquez R, Mares-Mayagoitia J A, et al. Population genomics reveals a mismatch between management and biological units in green abalone (Haliotis fulgens)[J]. PeerJ, 2020, 8: e9722. doi: 10.7717/peerj.9722
    [32] Moore J D, Juhasz C I, Robbins T T, et al. Green abalone, Haliotis fulgens infected with the agent of withering syndrome do not express disease signs under a temperature regime permissive for red abalone, Haliotis rufescens[J]. Marine Biology, 2009, 156(11): 2325−2330. doi: 10.1007/s00227-009-1260-8
    [33] Mazariegos-Villarreal A, Casas-Valdez M, Siqueiros-Beltrones D A, et al. Changes in the natural diet of green abalone Haliotis fulgens during the 1997 to 1998 El Niño event in Baja California Sur, Mexico[J]. Journal of Shellfish Research, 2012, 31(3): 795−800. doi: 10.2983/035.031.0325
    [34] Serviere-Zaragoza E, Pérez-Estrada C J, Aranda D A. Status of the digestive gland and feed index in juvenile green abalone Haliotis fulgens fed rehydrated macroalgae[J]. Aquaculture Nutrition, 2016, 22(4): 767−775. doi: 10.1111/anu.12295
    [35] Tripp-Valdez M A, Harms L, Pörtner H O, et al. De novo transcriptome assembly and gene expression profile of thermally challenged green abalone (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia[J]. Marine Genomics, 2019, 45: 48−56. doi: 10.1016/j.margen.2019.01.007
    [36] Calderón-Liévanos S, Lluch-Cota S E, Hernández-Saavedra N Y, et al. Responses of the green abalone Haliotis fulgens (Philippi, 1845) to sudden and recurring extreme environmental variations[J]. Journal of Shellfish Research, 2021, 40(1): 127−136.
    [37] Vélez-Arellano N, Valenzuela-Quiñonez F, García-Domínguez F A, et al. Long-term analysis on the spawning activity of green (Haliotis fulgens) and pink (Haliotis corrugata) abalone along the central west coast of Baja California[J]. Fisheries Research, 2020, 228: 105588. doi: 10.1016/j.fishres.2020.105588
    [38] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
    [39] Donath A, Jühling F, Al-Arab M, et al. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes[J]. Nucleic Acids Research, 2019, 47(20): 10543−10552. doi: 10.1093/nar/gkz833
    [40] Benson G. Tandem repeats finder: a program to analyze DNA sequences[J]. Nucleic Acids Research, 1999, 27(2): 573−580. doi: 10.1093/nar/27.2.573
    [41] Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Research, 2019, 47(W1): W59−W64. doi: 10.1093/nar/gkz238
    [42] Chen Chengjie, Chen Hao, Zhang Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [43] Xu Kefeng, Kanno M, Yu Hong, et al. Complete mitochondrial DNA sequence and phylogenetic analysis of Zhikong scallop Chlamys farreri (Bivalvia: Pectinidae)[J]. Molecular Biology Reports, 2011, 38(5): 3067−3074. doi: 10.1007/s11033-010-9974-8
    [44] Saccone C, De Giorgi C, Gissi C, et al. Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system[J]. Gene, 1999, 238(1): 195−209. doi: 10.1016/S0378-1119(99)00270-X
    [45] Perna N T, Kocher T D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes[J]. Journal of Molecular Evolution, 1995, 41(3): 353−358. doi: 10.1007/BF01215182
    [46] Yu Hong, Li Qi. Complete mitochondrial DNA sequence of Crassostrea nippona: comparative and phylogenomic studies on seven commercial Crassostrea species[J]. Molecular Biology Reports, 2012, 39(2): 999−1009. doi: 10.1007/s11033-011-0825-z
    [47] Brown W M. The mitochondrial genome of animals[M]//MacIntyre R J. Molecular Evolutionary Genetics. New York: Plenum, 1985: 95−130.
    [48] 远洋. 九种异齿亚纲贝类线粒体基因组研究[D]. 青岛: 中国海洋大学, 2013.

    Yuan Yang. Studies on complete mitochondrial genomes of nine subclass Heterodonta species[D]. Qingdao: Ocean University of China, 2013.
    [49] Terrett J A, Miles S, Thomas R H. Complete DNA sequence of the mitochondrial genome of Cepaea nemoralis (Gastropoda: Pulmonata)[J]. Journal of Molecular Evolution, 1996, 42(2): 160−168. doi: 10.1007/BF02198842
    [50] Jannotti-Passos L K, Ruiz J C, Caldeira R L, et al. Phylogenetic analysis of Biomphalaria tenagophila (Orbigny, 1835) (Mollusca: Gastropoda)[J]. Memórias do Instituto Oswaldo Cruz, 2010, 105(4): 504−511.
    [51] Crick F H C. Codon-anticodon pairing: the wobble hypothesis[J]. Journal of Molecular Biology, 1966, 19(2): 548−555. doi: 10.1016/S0022-2836(66)80022-0
    [52] Ren Jianfeng, Liu Xiao, Jiang Feng, et al. Unusual conservation of mitochondrial gene order in Crassostreaoysters: evidence for recent speciation in Asia[J]. BMC Evolutionary Biology, 2010, 10: 394. doi: 10.1186/1471-2148-10-394
    [53] Ren Jianfeng, Shen Xin, Jiang Feng, et al. The mitochondrial genomes of two scallops, Argopecten irradians and Chlamys farreri (Mollusca: Bivalvia): the most highly rearranged gene order in the family Pectinidae[J]. Journal of Molecular Evolution, 2010, 70(1): 57−68. doi: 10.1007/s00239-009-9308-4
    [54] Wolstenholme D R. Animal mitochondrial DNA: structure and evolution[J]. International Review of Cytology, 1992, 141: 173−216.
    [55] 孟学平, 申欣, 赵娜娜, 等. 漳州西施舌线粒体基因组全序列: 腔蛤蜊属(Coelomactra)存在新种的证据[J]. 海洋学报, 2013, 35(3): 204−214.

    Meng Xueping, Shen Xin, Zhao Nana, et al. The complete mitochondrial genome of Zhangzhou Coelomactra antiquata: the evidence of a new species in genus Coelomactra (Mollusca: Mactridae)[J]. Haiyang Xuebao, 2013, 35(3): 204−214.
    [56] Uda K, Komeda Y, Koyama H, et al. Complete mitochondrial genomes of two Japanese precious corals, Paracorallium japonicum and Corallium konojoi (Cnidaria, Octocorallia, Coralliidae): notable differences in gene arrangement[J]. Gene, 2011, 476(1/2): 27−37.
    [57] Leigh J, Lang B F. Mitochondrial 3′ tRNA editing in the jakobid Seculamonas ecuadoriensis: a novel mechanism and implications for tRNA processing[J]. RNA, 2004, 10(4): 615−621. doi: 10.1261/rna.5195504
    [58] 蒋文枰, 李家乐, 郑润玲, 等. 褶纹冠蚌线粒体基因组全序列分析[J]. 遗传, 2010, 32(2): 153−162. doi: 10.3724/SP.J.1005.2010.00153

    Jiang Wenping, Li Jiale, Zheng Runling, et al. Analysis of complete mitochondrial genome of Cristaria plicata[J]. Hereditas (Beijing), 2010, 32(2): 153−162. doi: 10.3724/SP.J.1005.2010.00153
    [59] 李云峰, 李梦遥, 王健, 等. 仿刺参线粒体全基因组序列结构及比较研究[J]. 水产科学, 2012, 31(8): 454−462. doi: 10.3969/j.issn.1003-1111.2012.08.002

    Li Yunfeng, Li Mengyao, Wang Jian, et al. Comparative structure of complete mitochondrial genome in sea cucumber Apostichopus japonicus[J]. Fisheries Science, 2012, 31(8): 454−462. doi: 10.3969/j.issn.1003-1111.2012.08.002
    [60] Yamazaki N, Ueshima R, Terrett J A, et al. Evolution of pulmonate gastropod mitochondrial genomes: comparisons of gene organizations of Euhadra, Cepaea and Albinaria and implications of unusual tRNA secondary structures[J]. Genetics, 1997, 145(3): 749−758. doi: 10.1093/genetics/145.3.749
    [61] Boore J L. Animal mitochondrial genomes[J]. Nucleic Acids Research, 1999, 27(8): 1767−1780. doi: 10.1093/nar/27.8.1767
    [62] Segovia R, Pett W, Trewick S, et al. Extensive and evolutionarily persistent mitochondrial tRNA editing in velvet worms (phylum onychophora)[J]. Molecular Biology and Evolution, 2011, 28(10): 2873−2881. doi: 10.1093/molbev/msr113
    [63] Hoffmann R J, Boore J L, Brown W M. A novel mitochondrial genome organization for the blue mussel, Mytilus edulis[J]. Genetics, 1992, 131(2): 397−412. doi: 10.1093/genetics/131.2.397
    [64] Yuan Yang, Li Qi, Kong Lingfeng, et al. The complete mitochondrial genome of the grand jackknife clam, Solen grandis (Bivalvia: Solenidae): a novel gene order and unusual non-coding region[J]. Molecular Biology Reports, 2012, 39(2): 1287−1292. doi: 10.1007/s11033-011-0861-8
    [65] Milbury C A, Gaffney P M. Complete mitochondrial DNA sequence of the eastern oyster Crassostrea virginica[J]. Marine Biotechnology, 2005, 7(6): 697−712. doi: 10.1007/s10126-005-0004-0
    [66] La Roche J, Snyder M, Cook D I, et al. Molecular characterization of a repeat element causing large-scale size variation in the mitochondrial DNA of the sea scallop Placopecten magellanicus[J]. Molecular Biology and Evolution, 1990, 7(1): 45−64.
    [67] Dreyer H, Steiner G. The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica–and the first record for a putative atpase subunit 8 gene in marine bivalves[J]. Frontiers in Zoology, 2006, 3: 13. doi: 10.1186/1742-9994-3-13
    [68] 宋文涛, 高祥刚, 李云峰, 等. 双壳贝类线粒体基因组结构的比较[J]. 遗传, 2009, 31(11): 1127−1134. doi: 10.3724/SP.J.1005.2009.01127

    Song Wentao, Gao Xianggang, Li Yunfeng, et al. Comparison of mitochondrial genomes of bivalves[J]. Hereditas (Beijing), 2009, 31(11): 1127−1134. doi: 10.3724/SP.J.1005.2009.01127
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  353
  • HTML全文浏览量:  161
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 修回日期:  2022-10-21
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回