Consistent analysis of sea surface temperature products between HY1C/1D and Terra/Aqua
-
摘要: 通过卫星遥感获取的海表温度(SST)产品已经成为海洋和大气研究中的重要数据源,我国海洋水色遥感卫星(HY1C和HY1D)的海洋水色水温扫描仪(COCTS)具有两个热红外通道,可反演全球SST遥感产品。对比Terra和Aqua卫星的中分辨率成像光谱仪(MODIS)的SST产品,分析COCTS海表温度产品对MODIS相应产品的可替代性。比较了两种卫星的全球SST单日和月平均融合产品的图像空间结构,分析了匹配像元SST值的离散度,统计了HY1C/1D的误差结果,讨论了HY1C与HY1D产品的一致性、不同质量控制方案对SST产品影响以及遥感产品质量对昼夜SST变化研究影响等问题。结果表明,以2020年6月SST(Terra)为真值,HY1C白天SST的单日全球遥感产品的平均偏差、绝对偏差、均方根误差和相关系数分别为0.04℃、0.60℃、0.78℃和0.98,夜晚SST的单日全球遥感产品的平均偏差、绝对偏差、均方根误差和相关系数分别为−0.16℃、0.78℃、0.95℃和0.86。以2020年6月SST(Aqua)为真值,HY1D白天SST的单日全球遥感产品的平均偏差、绝对偏差、均方根误差和相关系数分别为0.02℃、0.59℃、0.79℃和0.98,夜晚SST的单日全球遥感产品的平均偏差、绝对偏差、均方根误差和相关系数分别为−0.09℃、0.61℃、0.82℃和0.96。这些统计值可以通过严格的质量控制方案来减小,但海洋锋面等区域的有效数据率会随着质量控制的阈值变小而显著减小。COCTS的全球SST遥感图像与MODIS相应产品在空间分布上差异性很小,长时间序列遥感图像结果比较具有良好的时空稳定性,多种SST产品整体都表现出对MODIS同类产品具有良好的一致性和可替代性。通过对SST昼夜变化等方面研究,提出了遥感SST产品质量提升的发展方向,来提高其在海洋昼夜温度短期变化等相关海洋学研究的应用能力。
-
关键词:
- 海表温度 /
- COCTS-HY1C/1D /
- MODIS-Terra/Aqua /
- 可替代性
Abstract: The sea surface temperature (SST) products, obtained from the Chinese Ocean Color and Temperature Scanner (COCTS) on the two haiyang satellites (HY1C and HY1D), play an important role in oceanic and atmospheric researches. It is important to know whether they are consistent with products from other satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua satellites. The data quality of SST global images from COCTS on HY1C/1D is evaluated by the average bias, absolute difference, root mean square error, and correlation coefficient based on in-situ SST measurements and the MODIS products. The results show that the spatial patterns of the daily and monthly global SST of HY1C/1D are similar to those of Terra/Aqua. The average bias, absolute difference, root mean square error and correlation coefficient of the global daily SST/HY1C products at daytime, based on the SST values of Terra on June 2020, are 0.04℃, 0.60℃, 0.78℃ and 0.98, respectively, and that of the nighttime products are −0.16℃, 0.78℃, 0.95℃ and 0.86, respectively. Similarly, the values of the daytime SST products of HY1D comparing with the SST of Aqua on June 2020 are 0.02℃, 0.59℃, 0.79℃ and 0.98, and that of the nighttime products are −0.09℃, 0.61℃, 0.82℃ and 0.96, respectively. The evaluation on other seasons indicates that the SST products from COCTS are very stable. However, the data quality control scheme and inhomogeneity correction still need to be developed to improve the performance of SST products of HY1C/1D. As a whole, the SST products of HY1C/1D can be used in some applications, similar to the Terra/Aqua products.-
Key words:
- sea surface temperature /
- COCTS-HY1C/1D /
- MODIS-Terra/Aqua /
- consistent
-
表 1 COCTS和MODIS用于探测海表温度的波段特征[11]
Tab. 1 Characteristics of COCTS and MODIS bands to detect surface sea temperature
探测器 通道 带宽/μm 中心波长/
μm等效噪声温度差/K 光谱辐射率/
(W·m−2·μm−1·sr−1)COCTS 9 10.30~11.30 10.8 0.20 − 10 11.50~12.50 12.0 0.20 − MODIS 31 10.78~11.28 11.03 0.05 9.55(300 K) 32 11.77~12.27 12.02 0.05 8.94(300 K) 注:300 K代表标准300 K温度下光谱辐射率的值;“−”代表COCTS的光谱辐射率在9和10通道未给出,对应波段的亮温测量范围为200~320 K。 表 2 2020年10月2日HY1C与HY1D SST(单位:℃)匹配点统计分析结果
Tab. 2 The evaluation of SST (unit: ℃) products of HY1C/1D on October 2, 2020
参考 卫星 时间 平均
偏差绝对
偏差均方根
误差相关
系数绝对偏差<0.5℃
比例/%实测 HY1C 白天 −0.30 0.62 0.86 0.99 54.38 夜晚 −0.33 0.61 0.86 0.99 56.25 HY1D 白天 −0.17 0.61 0.80 0.99 50.12 夜晚 −0.31 0.70 0.92 0.99 46.15 MODIS HY1C 白天 −0.01 0.63 0.83 0.99 49.82 夜晚 −0.03 0.61 0.83 0.99 47.93 HY1D 白天 0.11 0.61 0.81 0.99 46.75 夜晚 −0.02 0.65 0.88 0.99 50.28 表 3 2020年6月与Terra比较的HY1C全球单日的白天SST(单位:℃)误差统计结果
Tab. 3 The accuracy of daily global SST (unit: ℃) of HY1C at daytime in June, 2020 based on SST of Terra
日期 平均偏差 绝对偏差 均方根误差 相关系数 HY1C平均 Terra平均 6月14日 0.04 0.59 0.78 0.98 23.42 23.39 6月15日 −0.09 0.68 0.88 0.97 22.98 23.19 6月16日 −0.05 0.62 0.82 0.97 22.90 23.06 6月17日 0.12 0.57 0.76 0.98 23.23 23.12 6月18日 0.10 0.55 0.72 0.98 23.95 23.85 6月19日 0.0 0.66 0.85 0.97 22.85 22.84 6月20日 0.01 0.64 0.83 0.97 22.43 22.48 6月21日 0.10 0.58 0.76 0.98 23.22 23.15 6月22日 0.14 0.53 0.69 0.98 23.38 23.21 6月23日 0.04 0.61 0.80 0.98 22.98 22.98 6月24日 0.02 0.66 0.86 0.97 23.38 23.46 6月25日 0.05 0.60 0.79 0.97 23.51 23.51 6月26日 0.17 0.51 0.67 0.98 24.01 23.83 6月27日 0.0 0.58 0.76 0.98 23.84 23.86 6月28日 −0.01 0.65 0.84 0.97 23.73 23.84 6月29日 −0.01 0.61 0.80 0.97 23.83 23.92 6月30日 0.10 0.49 0.66 0.98 23.78 23.71 平均 0.04 0.60 0.78 0.98 23.37 23.38 表 4 2020年6月与Terra比较的HY1C全球单日的夜晚SST(单位:℃)误差统计结果
Tab. 4 The accuracy of daily global SST of HY1C at nighttime in June, 2020 based on SST (unit: ℃) of Terra
日期 平均偏差 绝对偏差 均方根误差 相关系数 HY1C平均 Terra平均 6月14日 −0.18 0.79 0.96 0.85 23.63 24.65 6月15日 −0.13 0.76 0.93 0.87 23.11 24.19 6月16日 −0.19 0.78 0.94 0.82 22.79 24.14 6月17日 −0.24 0.82 0.98 0.84 23.58 24.84 6月18日 −0.18 0.79 0.97 0.83 23.58 24.68 6月19日 −0.25 0.77 0.95 0.86 24.76 25.95 6月20日 −0.09 0.75 0.92 0.86 23.82 24.66 6月21日 −0.14 0.82 0.98 0.85 23.44 24.60 6月22日 −0.19 0.79 0.96 0.89 23.02 24.04 6月23日 −0.11 0.79 0.96 0.86 23.54 24.60 6月24日 −0.07 0.76 0.93 0.85 23.74 24.64 6月25日 −0.14 0.77 0.95 0.88 23.56 24.50 6月26日 −0.17 0.81 0.96 0.84 23.55 24.78 6月27日 −0.27 0.81 0.99 0.84 23.74 24.97 6月28日 −0.06 0.72 0.91 0.88 23.86 24.69 6月29日 −0.15 0.74 0.92 0.86 23.75 24.76 6月30日 −0.16 0.80 0.96 0.84 23.51 24.62 平均 −0.16 0.78 0.95 0.86 23.59 24.67 表 5 2020年6月与Aqua比较的HY1D全球单日的白天SST(单位:℃)误差统计结果
Tab. 5 The accuracy of daily global SST (unit: ℃) of HY1C at daytime in June, 2020 based on SST of Aqua
日期 平均偏差 绝对偏差 均方根误差 相关系数 HY1C平均 Terra平均 6月14日 0.10 0.52 0.70 0.97 23.35 23.13 6月15日 −0.01 0.60 0.80 0.98 22.66 22.72 6月16日 0 0.65 0.86 0.97 22.65 22.76 6月17日 0 0.61 0.81 0.97 23.10 23.20 6月18日 0.05 0.51 0.70 0.98 23.51 23.45 6月19日 0.01 0.59 0.80 0.98 22.79 22.82 6月20日 −0.05 0.64 0.86 0.97 23.07 23.20 6月21日 −0.04 0.64 0.86 0.97 22.36 22.52 6月22日 0 0.56 0.77 0.98 22.89 22.92 6月23日 0.05 0.55 0.74 0.98 22.79 22.73 6月24日 0.06 0.58 0.79 0.98 23.24 23.22 6月25日 0.04 0.61 0.81 0.97 23.54 23.59 6月26日 0.02 0.57 0.77 0.98 23.76 23.74 6月27日 0.05 0.53 0.72 0.98 23.78 23.71 6月28日 0.04 0.58 0.77 0.98 23.60 23.56 6月29日 −0.03 0.61 0.81 0.97 23.49 23.62 6月30日 −0.01 0.60 0.81 0.97 23.37 23.45 平均 0.02 0.59 0.79 0.98 23.17 23.20 表 6 2020年6月与Aqua比较的HY1D全球单日的夜晚SST(单位:℃)误差统计结果
Tab. 6 The accuracy of daily global SST (unit: ℃) of HY1D at nighttime in June, 2020 based on SST of Aqua
日期 平均偏差 绝对偏差 均方根误差 相关系数 HY1C平均 Terra平均 6月14日 0 0.53 0.73 0.98 23.20 23.27 6月15日 −0.10 0.58 0.79 0.98 23.33 23.55 6月16日 −0.14 0.66 0.87 0.95 23.75 24.12 6月17日 −0.11 0.66 0.88 0.96 23.77 24.10 6月18日 −0.09 0.59 0.80 0.96 23.96 24.25 6月19日 −0.07 0.54 0.74 0.97 24.54 24.70 6月20日 −0.18 0.68 0.89 0.96 23.85 24.26 6月21日 −0.13 0.67 0.89 0.95 23.61 24.01 6月22日 −0.12 0.67 0.88 0.97 23.07 23.55 6月23日 −0.05 0.57 0.77 0.97 23.66 23.89 6月24日 −0.08 0.59 0.80 0.96 23.49 23.80 6月25日 −0.01 0.62 0.83 0.95 23.78 24.05 6月26日 −0.04 0.58 0.78 0.96 23.81 24.07 6月27日 −0.07 0.59 0.80 0.97 24.19 24.41 6月28日 −0.15 0.61 0.84 0.97 24.11 24.42 6月29日 −0.13 0.65 0.86 0.96 23.89 24.23 6月30日 −0.10 0.65 0.87 0.96 23.71 24.05 平均 −0.09 0.61 0.82 0.96 23.75 24.04 表 7 2020年7月HY1C/1D与Terra/Aqua SST(单位:℃)月产品匹配点统计分析结果
Tab. 7 Comparison of the monthly SST (unit: ℃) statistical analysis between HY1C/1D and Terra/Aqua in July, 2020
产品类型 平均偏差 绝对偏差 均方根误差 相关系数 HY1C/Terra 白天 −0.09 0.51 0.71 0.99 HY1C/Terra 夜晚 −0.18 0.52 0.72 0.99 HY1D/Aqua 白天 −0.21 0.58 0.82 0.99 HY1D/Aqua 夜晚 −0.17 0.61 0.84 0.99 表 8 2020年6月HY1C与HY1D白天单日全球SST(单位:℃)产品对比统计分析结果
Tab. 8 Comparison of daily global SST (unit: ℃) statistical analysis between HY1C and HY1D at daytime on June, 2020
日期 平均
偏差绝对
偏差均方根
误差相关
系数HY1C
平均HY1D
平均6月14日 −0.18 0.89 1.02 0.82 21.57 22.19 6月15日 −0.15 0.92 1.04 0.83 21.67 22.22 6月16日 −0.12 0.91 1.03 0.83 21.31 22.00 6月17日 −0.16 0.94 1.06 0.84 21.48 22.07 6月18日 −0.13 0.92 1.05 0.84 22.00 22.45 平均 −0.15 0.92 1.04 0.83 21.61 22.19 表 9 2020年6月HY1C与HY1D夜晚单日全球SST(单位:℃)产品对比统计分析结果
Tab. 9 Comparison of daily global SST (unit: ℃) statistical analysis between HY1C and HY1D at nighttime on June, 2020
日期 平均
偏差绝对
偏差均方根
误差相关
系数HY1C
平均HY1D
平均6月14日 0.10 1.05 1.09 0.74 21.14 20.80 6月15日 0.16 1.06 1.08 0.74 21.05 20.58 6月16日 0.10 1.05 1.07 0.71 20.81 20.36 6月17日 0.16 1.06 1.09 0.73 21.36 20.83 6月18日 0.15 1.05 1.09 0.73 21.44 20.87 平均 0.13 1.05 1.09 0.73 21.16 20.69 表 10 HY1C/1D与Terra/Aqua SST融合产品统计分析结果(2020年6月14日)
Tab. 10 Merged SST statistical analysis between HY1C/1D and Terra/Aqua on June 14, 2020
产品类型 平均偏差/℃ 绝对偏差/℃ 均方根误差/℃ 相关系数 白天 0.14 0.74 0.97 0.98 夜晚 0.15 0.51 0.71 0.99 -
[1] Minnett P J, Evans R H, Kearns E J, et al. Sea-surface temperature measured by the Moderate Resolution Imaging Spectroradiometer (MODIS)[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Toronto, ON, Canada: IEEE, 2002. [2] Banzon V, Smith T M, Chin T M, et al. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies[J]. Earth System Science Data, 2016, 8(1): 165−176. doi: 10.5194/essd-8-165-2016 [3] Saunders P M. Aerial measurement of sea surface temperature in the infrared[J]. Journal of Geophysical Research, 1967, 72(16): 4109−4117. doi: 10.1029/JZ072i016p04109 [4] 魏寒艳, 崔生成, 杨世植, 等. 基于MODIS数据的海表温度反演[J]. 大气与环境光学学报, 2018, 13(4): 277−284.Wei Hanyan, Cui Shengcheng, Yang Shizhi, et al. Sea surface temperature retrieving using MODIS data[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(4): 277−284. [5] 王祥. 基于国产自主卫星的海表温度红外遥感机理与算法研究[D]. 大连: 大连海事大学, 2013.Wang Xiang. A study on infrared remote sensing mechanism and algorithms of SST retrieval with autonomic satellite data[D]. Dalian: Dalian Maritime University, 2013. [6] McMillin L. The split window retrieval algorithm for sea surface temperature derived from satellite measurements[J]. Remote Sensing of Atmospheres and Oceans, 1979: 453−455. [7] McClain E P, Pichel W G, Walton C C. Comparative performance of AVHRR-based multichannel sea surface temperatures[J]. Journal of Geophysical Research: Oceans, 1985, 90(C6): 11587−11601 [8] Emery W J, Yu Yunyue, Wick G A, et al. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation[J]. Journal of Geophysical Research: Oceans, 1994, 99(C3): 5219−5236. doi: 10.1029/93JC03215 [9] Walton C C. Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data[J]. Journal of Applied Meteorology and Climatology, 1988, 27(2): 115−124. doi: 10.1175/1520-0450(1988)027<0115:NMAFES>2.0.CO;2 [10] Walton C C, Pichel W G, Sapper J F, et al. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites[J]. Journal of Geophysical Research: Oceans, 1998, 103(C12): 27999−28012. doi: 10.1029/98JC02370 [11] Ye Xiaomin, Liu Jianqiang, Lin Mingsen, et al. Sea surface temperatures derived from COCTS onboard the HY-1C satellite[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1038−1047. doi: 10.1109/JSTARS.2020.3033317 [12] Kilpatrick K A, Podestá G, Walsh S, et al. A decade of sea surface temperature from MODIS[J]. Remote Sensing of Environment, 2015, 165: 27−41. doi: 10.1016/j.rse.2015.04.023 [13] Minnett P J, Brown O B, Evans R H, et al. Sea-surface temperature measurements from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra[C]//Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage, USA: IEEE, 2004. [14] Chin T M, Vazquez-Cuervo J, Armstrong E M. A multi-scale high-resolution analysis of global sea surface temperature[J]. Remote Sensing of Environment, 2017, 200: 154−169. doi: 10.1016/j.rse.2017.07.029 [15] Shi Wei, Wang Menghua. Satellite views of the Bohai Sea, Yellow Sea, and East China Sea[J]. Progress in Oceanography, 2012, 104: 30−45. doi: 10.1016/j.pocean.2012.05.001 [16] Wirasatriya A, Setiawan R Y, Subardjo P. The effect of ENSO on the variability of chlorophyll-a and sea surface temperature in the Maluku Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5513−5518. doi: 10.1109/JSTARS.2017.2745207 [17] Purwandari R N, Mubarrok S, Mandang I. Sea surface temperature variability in the Makassar strait during ENSO (El niño Southern Oscillation) from the Terra-MODIS data sets[J]. Journal of Physics: Conference Series, 2019, 1282: 012052. doi: 10.1088/1742-6596/1282/1/012052 [18] Kuo Y C, Tseng Y H. Impact of ENSO on the South China Sea during ENSO decaying winter-spring modeled by a regional coupled model (a new mesoscale perspective)[J]. Ocean Modelling, 2020, 152: 101655. doi: 10.1016/j.ocemod.2020.101655 [19] 李璇, 陈文忠. 基于MODIS卫星遥感数据的西北太平洋初级生产力与环境参数的相关性[J]. 海洋开发与管理, 2020, 37(4): 32−41. doi: 10.3969/j.issn.1005-9857.2020.04.006Li Xuan, Chen Wenzhong. The correlation between net primary productivity and environmental parameters of Northwest Pacific based on MODIS satellite remote sensing data[J]. Ocean Development and Management, 2020, 37(4): 32−41. doi: 10.3969/j.issn.1005-9857.2020.04.006 [20] 刘建强, 曾韬, 梁超, 等. 海洋一号C卫星在自然灾害监测中的应用[J]. 卫星应用, 2020, 102(6): 26−34. doi: 10.3969/j.issn.1674-9030.2020.06.008Liu Jianqiang, Zeng Tao, Liang Chao, et al. Application of HY-1C satellite in natural disaster monitoring[J]. Satellite Application, 2020, 102(6): 26−34. doi: 10.3969/j.issn.1674-9030.2020.06.008 [21] 奚萌, 宋清涛, 林明森, 等. 西北太平洋红外辐射计海表温度数据交叉比对分析[J]. 海洋与湖沼, 2017, 48(3): 436−453.Xi Meng, Song Qingtao, Lin Mingsen, et al. Comparison in multi-infrared products of sea surface temperature in Northwest Pacific[J]. Oceanologia et Limnologia Sinica, 2017, 48(3): 436−453. [22] Hosoda K, Murakami H, Sakaida F, et al. Algorithm and validation of sea surface temperature observation using MODIS sensors aboard Terra and Aqua in the western North Pacific[J]. Journal of Oceanography, 2007, 63(2): 267−280. doi: 10.1007/s10872-007-0027-4 [23] Xu Feng, Ignatov A. In situ SST quality monitor (iQuam)[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(1): 164−180. doi: 10.1175/JTECH-D-13-00121.1 [24] Tu Qianguang, Hao Zengzhou. Validation of sea surface temperature derived from Himawari-8 by JAXA[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 448−459. doi: 10.1109/JSTARS.2019.2963773 [25] Mcclain E P, Pichel W G, Walton C C. Comparative performance of AVHRR-based multichannel sea surface temperatures[J]. Journal of Geophysical Research: Oceans, 1985, 90(C6): 11587−11601. doi: 10.1029/JC090iC06p11587 [26] Song Dan, Duan Zhigang, Zhai Fangguo, et al. Surface diurnal warming in the East China Sea derived from satellite remote sensing[J]. Journal of Oceanology and Limnology, 2018, 36(3): 620−629. doi: 10.1007/s00343-018-7035-7 [27] Stuart-Menteth A C. A global study of diurnal warming using satellite-derived sea surface temperature[J]. Journal of Geophysical Research: Oceans, 2003, 108(C5): 3155. doi: 10.1029/2002JC001534 [28] He Shuangyan, Huang Daji, Zeng Dingyong. Double SST fronts observed from MODIS data in the East China Sea off the Zhejiang-Fujian coast, China[J]. Journal of Marine Systems, 2016, 154: 93−102. doi: 10.1016/j.jmarsys.2015.02.009 [29] Putra R D, Suhana M P, Kurniawn D, et al. Detection of reef scale thermal stress with Aqua and Terra MODIS satellite for coral bleaching phenomena[J]. AIP Conference Proceedings, 2019, 2094: 020024. [30] Huang Zhi, Feng Ming. Remotely sensed spatial and temporal variability of the Leeuwin Current using MODIS data[J]. Remote Sensing of Environment, 2015, 166: 214−232. doi: 10.1016/j.rse.2015.05.028 [31] 刘伊格, 苗俊伟, 孙伟富, 等. VIIRS与MODIS海表面温度产品观测能力对比分析[J]. 海洋科学进展, 2019, 37(3): 417−431. doi: 10.3969/j.issn.1671-6647.2019.03.006Liu Yige, Miao Junwei, Sun Weifu, et al. Observational capabilities comparison of sea surface temperature by VIIRS and MODIS[J]. Advances in Marine Science, 2019, 37(3): 417−431. doi: 10.3969/j.issn.1671-6647.2019.03.006 [32] 刘建阳, 毛志华, 陶邦一, 等. HY-1C/D卫星中国海洋水色水温扫描仪几何定位方法[J]. 海洋学报, 2022, 44(5): 47−61.Liu Jianyang, Mao Zhihua, Tao Bangyi, et al. Geometric positioning method of HY-1C/D satellite Chinese ocean color and temperature scanner[J]. Haiyang Xuebao, 2022, 44(5): 47−61. [33] 王素娟, 崔鹏, 张鹏, 等. FY-3C/VIRR海表温度产品及质量检验[J]. 应用气象学报, 2020, 31(6): 729−739. doi: 10.11898/1001-7313.20200608Wang Sujuan, Cui Peng, Zhang Peng, et al. FY-3C/VIRR sea surface temperature products and quality validation[J]. Journal of Applied Meteorological Science, 2020, 31(6): 729−739. doi: 10.11898/1001-7313.20200608 [34] 毛志华, 朱乾坤, 潘德炉. 卫星遥感业务系统海表温度误差控制方法[J]. 海洋学报, 2003, 25(5): 49−57.Mao Zhihua, Zhu Qiankun, Pan Delu. A temperature error control technology for an operational satellite application system[J]. Haiyang Xuebao, 2003, 25(5): 49−57. [35] Wang Minyang, Du Yan, Qiu Bo, et al. Mechanism of seasonal eddy kinetic energy variability in the eastern equatorial Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3240−3252. doi: 10.1002/2017JC012711 [36] Karagali I, Høyer J L. Characterisation and quantification of regional diurnal SST cycles from SEVIRI[J]. Ocean Science, 2014, 10(5): 745−758. doi: 10.5194/os-10-745-2014 [37] 王剑, 凌铁军, 韩雪. 中低纬度海表面温度日变化特征分析[J]. 海洋预报, 2017, 34(6): 1−7. doi: 10.11737/j.issn.1003-0239.2017.06.001Wang Jian, Ling Tiejun, Han Xue. Diurnal variabilities of sea surface temperature in the low-and mid-latitudes[J]. Marine Forecasts, 2017, 34(6): 1−7. doi: 10.11737/j.issn.1003-0239.2017.06.001 [38] Dickey T, Marra J, Sigurdson D E, et al. Seasonal variability of bio-optical and physical properties in the Arabian Sea: October 1994–October 1995[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45(10/11): 2001−2025. [39] Mauzole Y L. Objective delineation of persistent SST fronts based on global satellite observations[J]. Remote Sensing of Environment, 2022, 269: 112798. doi: 10.1016/j.rse.2021.112798 -