Researches on characteristics of shapes of freak waves in the Norwegian Sea
-
摘要: 畸形波波形与其所处海况特征密切相关。在线性、窄谱假定下,最可能出现的畸形波波形服从“新波”理论,即最大波位于波群中间且其前后相邻波浪对称。然而,实际海浪谱通常是包含多种频率成分的宽谱。目前对实测畸形波及其附近波面形态特征仍缺乏系统认知,对其影响因素尚不明确。本文基于挪威海气象观测站共112个畸形波序列,分析实测畸形波波形及影响因素。研究表明,只有52%的畸形波在波群中间,其余畸形波在波群前侧的概率更高。此外,畸形波前后相邻波浪并不完全对称,其中位于后侧的波幅普遍更大。通过定量分析实测畸形波的平均波形与“新波”理论结果,发现谱宽是影响畸形波波形的关键参数。随谱宽增加,畸形波的平均波形与“新波”理论得到的波面序列误差呈指数增加。Abstract: Shapes of freak waves are strongly related to the characteristics of their surrounding sea state. The most probable shape of rogue waves obeys NewWave theory under the narrow band assumption in the linear process. Based on the NewWave theory, the largest wave is located in the center of a wave group and the adjacent waves are symmetrical. However, wide spectral widths containing various frequency components are more common in the ocean. There is still a lack of systematic understanding of the shapes of in-situ measured freak waves and the surrounding waves. Furthermore, key parameters that affect the shapes are not clear. In the present study, shapes of 112 freak waves and the related influence factors from the ocean weather station in the Norwegian Sea are investigated. Merely 52% of freak waves are located in the center of the group, and the possibility of other freak waves occurring towards the front of the wave groups is higher. Besides, shapes of the adjacent prior and following waves of freak waves are asymmetry. Generally, the amplitude of the following wave is larger than that of the preceding one. By quantitatively comparing shapes of the averaged measured rogue waves and based on the NewWave theory, it is found that the spectral width is a key parameter for affecting shapes of freak waves. With the spectral width wider, the difference of profiles of sea surface elevations around the freak waves between the measured and using the NewWave theory is exponentially increasing.
-
Key words:
- freak waves /
- Norwegian Sea /
- wave shapes /
- asymmetry /
- spectral widths
-
图 6 典型实测畸形波序列
a. 畸形波波峰明显大于波谷(2004年7月8日);b. 畸形波波峰、波谷接近(2004年2月18日);c. 畸形波波谷明显大于波峰(2004年7月6日)
Fig. 6 Typical measured time series containing freak waves
a. A freak wave with a greater wave-crest amplitude than the wavetrough (July 8, 2004); b. a freak wave with almost identical amplitude of wave-crest and wavetrough (February 18, 2004); c. a freak wave corresponding to a deeper wavetrough (July 6, 2004)
图 12 波群最大波峰(或波谷)前后相邻波峰(或波谷)不对称程度随波群内最大无量纲波高(a,b)、波陡(c,d)及谱宽(e,f)的变化
Fig. 12 Distributions of the asymmetry for the the adjacent preceeding and following wave-crest (wavetrough) of the largest wave-crest (wavetrough) as a function of the normalized maximum wave height (a, b), wave steepness (c, d), and spectral width (e, f)
图 13 2004年挪威海波峰占优(a)与波谷占优(b)的畸形波及其附近波面无量纲波形
灰色阴影为实测畸形波波形;蓝色阴影为与实测畸形波相同波况下的“新波”理论波形;黑色虚线为实测平均波形;蓝色实线为不同海况下基于“新波”理论得到的平均波形
Fig. 13 Normalized temporal profile of sea surface elevations around the observed maximum crest height (a) and the maximum trough height (b) in the Norwegian Sea during 2004
The gray shaded represents all wave profiles for the measured freak waves; the blue shaded represents wave profiles using the NewWave theory based on the same wave conditions as the measured freak waves; black dash lines represent measured averaged wave shapes; blue solid lines represent averaged wave shapes based on the NewWave theory for different wave cases
图 15 2004年挪威海典型谱宽下波峰占优(a)与波谷占优(b)的畸形波及其附近波面无量纲波形
灰色阴影为实测畸形波波形;蓝色阴影为与实测畸形波相同波况下的“新波”理论波形;黑色虚线为实测平均波形;蓝色实线为不同海况下基于“新波”理论得到的平均波形
Fig. 15 Normalized temporal profile of sea surface elevations around the observed maximum crest height in typical spectral widths (a) and the maximum trough height (b) in the Norwegian Sea during 2004
The gray shaded represents all wave profiles for the measured freak waves; the blue shaded represents wave profiles using the NewWave theory based on the same wave conditions as the measured freak waves; black dash lines represent measured averaged wave shapes; blue solid lines represent averaged wave shapes based on the NewWave theory for different wave cases
-
[1] Dysthe K, Krogstad H E, Müller P. Oceanic rogue waves[J]. Annual Review of Fluid Mechanics, 2008, 40: 287−310. doi: 10.1146/annurev.fluid.40.111406.102203 [2] 付睿丽, 马玉祥, 董国海. 深水随机波列中畸形波统计特征的研究[J]. 海洋学报, 2021, 43(10): 81−89.Fu Ruili, Ma Yuxiang, Dong Guohai. Researches on statistical properties of freak waves in uni-directional random waves in deep water[J]. Haiyang Xuebao, 2021, 43(10): 81−89. [3] 璩静, 叶海英. 中国北极科考队成功布放首个极地大型海洋观测浮标[N/OL]. (2012−08−06) [2022−08−04]. http://www.cma.gov.cn/2011xwzx/2011xqhbh/2011xrdtp/201208/t20120806_181019.html.Qu Jing, Ye Haiying. China’s Arctic research team successfully deployed its first large ocean observation buoy in the polar region[N/OL]. (2012−08−06) [2022−08−04]. http://www.cma.gov.cn/2011xwzx/2011xqhbh/2011xrdtp/201208/t20120806_181019.html. [4] 陈海波. 中国建成世界首座半潜式智能海上渔场可抗12级台风[N/OL]. (2017−06−04) [2022−08−04]. https://www.chinanews.com.cn/cj/2017/06-04/8241330.shtml.Chen Haibo. China built the world's first semi-submersible intelligent Marine fishery[N/OL]. (2017−06−04) [2022−08−04]. https://www.chinanews.com.cn/cj/2017/06-04/8241330.shtml. [5] Kharif C, Pelinovsky E, Slunyaev A. Rogue Waves in the Ocean[M]. Berlin: Springer, 2009. [6] Magnusson A K, Donelan M A. The Andrea wave characteristics of a measured North Sea rogue wave[J]. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135(3): 031108. doi: 10.1115/1.4023800 [7] Christou M, Ewans K. Field measurements of rogue water waves[J]. Journal of Physical Oceanography, 2014, 44(9): 2317−2335. doi: 10.1175/JPO-D-13-0199.1 [8] McAllister M, Venugopal V, Borthwick A G L. Wave directional spreading from point field measurements[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473(2200): 20160781. doi: 10.1098/rspa.2016.0781 [9] 李昊, 管长龙. 北海“新年波事件”海浪场的数值模拟[J]. 海洋湖沼通报, 2019(1): 1−6. doi: 10.13984/j.cnki.cn37-1141.2019.01.001Li Hao, Guan Changlong. Numerical modeling of wave field for the New Year wave event occurring at North Sea[J]. Transactions of Oceanology and Limnology, 2019(1): 1−6. doi: 10.13984/j.cnki.cn37-1141.2019.01.001 [10] Stansell P. Distributions of freak wave heights measured in the North Sea[J]. Applied Ocean Research, 2004, 26(1/2): 35−48. [11] Feng Xiangbo, Tsimplis M N, Quartly G D, et al. Wave height analysis from 10 years of observations in the Norwegian Sea[J]. Continental Shelf Research, 2014, 72: 47−56. doi: 10.1016/j.csr.2013.10.013 [12] Didenkulova I. Shapes of freak waves in the coastal zone of the Baltic Sea (Tallinn Bay)[J]. Boreal Environment Research, 2011, 16(SA): 138−148. [13] 陶爱峰, 郑金海, 武雨晴. 江苏近海畸形波特性研究[C]//第一届海洋防灾减灾学术交流会论文集. 北京: 自然资源部海洋减灾中心, 2014: 89.Tao Aifeng, Zheng Jinhai, Wu Yuqing. Study on characteristics of freak waves in Jiangsu coastal regions[C]//Proceedings of the First Academic Exchange on Marine Disaster Prevention and Mitigation. Beijing: National Marine Hazard Mitigation Service, 2014: 89. [14] Slunyaev A, Sergeeva A, Didenkulova I. Rogue events in spatiotemporal numerical simulations of unidirectional waves in basins of different depth[J]. Natural Hazards, 2016, 84(2): 549−565. [15] Sergeeva A, Slunyaev A. Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states[J]. Natural Hazards and Earth System Sciences, 2013, 13(7): 1759−1771. doi: 10.5194/nhess-13-1759-2013 [16] Zhang Huidong, Liao Xinmei, Shi Hongda, et al. Effect of initial condition uncertainty on the profile of maximum wave[J]. Marine Structures, 2022, 82: 103127. doi: 10.1016/j.marstruc.2021.103127 [17] Tromans P S, Anaturk A R, Hagemeijer P. A new model for the kinematics of large ocean waves-application as a design wave[C]//The First International Offshore and Polar Engineering Conference. Edinburgh, The United Kingdom: ISOPE, 1991: 64−71. [18] Taylor P H, Williams B A. Wave statistics for intermediate depth water—NewWaves and symmetry[J]. Journal of Offshore Mechanics and Arctic Engineering, 2004, 126(1): 54−59. doi: 10.1115/1.1641796 [19] Santo H, Taylor P H, Eatock Taylor R, et al. Average properties of the largest waves in Hurricane Camille[J]. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135(1): 011602. doi: 10.1115/1.4006930 [20] Gemmrich J, Thomson J. Observations of the shape and group dynamics of rogue waves[J]. Geophysical Research Letters, 2017, 44(4): 1823−1830. [21] 文铖, 陶爱峰, 李硕, 等. 挪威北海最大波高的影响分析[J]. 海洋湖沼通报, 2017(2): 12−22. doi: 10.13984/j.cnki.cn37-1141.2017.02.002Wen Cheng, Tao Aifeng, Li Shuo, et al. Influence of the maximum wave height in the Norwegian Sea[J]. Transactions of Oceanology and Limnology, 2017(2): 12−22. doi: 10.13984/j.cnki.cn37-1141.2017.02.002 [22] Fu Ruili, Ma Yuxiang, Dong Guohai, et al. A wavelet-based wave group detector and predictor of extreme events over unidirectional sloping bathymetry[J]. Ocean Engineering, 2021, 229: 108936. doi: 10.1016/j.oceaneng.2021.108936 [23] Fu Ruili, Ma Yuxiang, Dong Guohai, et al. A new predictor of extreme events in irregular waves considering interactions of adjacent wave groups[J]. Ocean Engineering, 2022, 244: 110441. doi: 10.1016/j.oceaneng.2021.110441 [24] Feng Xiangbo, Tsimplis M N, Yelland M J, et al. Changes in significant and maximum wave heights in the Norwegian Sea[J]. Global and Planetary Change, 2014, 113: 68−76. doi: 10.1016/j.gloplacha.2013.12.010 [25] Serio M, Onorato M, Osborne A R, et al. On the computation of the Benjamin-Feir Index[J]. Nuovo Cimento C, Serie 1, 2005, 28(6): 893−903. [26] Janssen P A E M. Nonlinear four-wave interactions and freak waves[J]. Journal of Physical Oceanography, 2003, 33(4): 863−884. doi: 10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2 -