留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于走航观测数据的ERA5南海北部夏季短波辐射收支评估

章振 张功 刘长炜 吴仁豪 齐木荣 邓汉虞 陈剑桥 韩博

章振,张功,刘长炜,等. 基于走航观测数据的ERA5南海北部夏季短波辐射收支评估[J]. 海洋学报,2023,45(2):51–61 doi: 10.12284/hyxb2023029
引用本文: 章振,张功,刘长炜,等. 基于走航观测数据的ERA5南海北部夏季短波辐射收支评估[J]. 海洋学报,2023,45(2):51–61 doi: 10.12284/hyxb2023029
Zhang Zhen,Zhang Gong,Liu Changwei, et al. Estimation of ERA5 shortwave radiation budget in the northern South China Sea in summer based on navigation observation data[J]. Haiyang Xuebao,2023, 45(2):51–61 doi: 10.12284/hyxb2023029
Citation: Zhang Zhen,Zhang Gong,Liu Changwei, et al. Estimation of ERA5 shortwave radiation budget in the northern South China Sea in summer based on navigation observation data[J]. Haiyang Xuebao,2023, 45(2):51–61 doi: 10.12284/hyxb2023029

基于走航观测数据的ERA5南海北部夏季短波辐射收支评估

doi: 10.12284/hyxb2023029
基金项目: 国家重点研发计划(2020YFA0608804);南方海洋科学与工程广东省实验室(珠海)自主立项项目(SML2020SP007, SML2021SP201);广东省基础与应用基础研究基金(2020A1515110675);广东省自然资源厅广东省海洋经济发展(海洋六大产业)专项资金(粤自然资合[2022]18号)。
详细信息
    作者简介:

    章振(1997-),男,安徽省合肥市人,主要从事海–气界面能量平衡研究。E-mail:zhangzh358@mail2.sysu.edu.cn

    通讯作者:

    韩博(1982-),男,陕西省宝鸡市人,副教授,主要从事海–气界面能量平衡与大气边界层研究。E-mail:hanbo5@mail.sysu.edu.cn

  • 中图分类号: P444

Estimation of ERA5 shortwave radiation budget in the northern South China Sea in summer based on navigation observation data

  • 摘要: 海表短波辐射收支是海–气界面能量交换的重要物理过程。本研究利用2019年南海北部夏季科考航次的走航观测数据,评估了ERA5再分析数据的海表短波辐射通量收支。结果表明,ERA5的向下短波辐射相比观测偏小,11时和15时(北京时间)的偏差最大,可达−100 W/m2 。与此同时,ERA5的海表反照率整体偏低,其中高太阳高度角时段偏差较小,约为−0.03,低太阳高度角时段偏差较大,约为−0.15。向下短波辐射和反照率的偏差共同造成ERA5白天平均海表净短波辐射通量比观测偏小约25.4 W/m2;其中,反照率低估抵消了约50%向下短波辐射偏差的贡献。研究表明,在不同大气透射率情况下,ERA5的海表辐射收支偏差存在不同表现。ERA5海表反照率的低估可能与其采用的参数化方案在南海北部的适用性不足有关。基于观测本研究也给出了一个简单的参数优化方案。
  • 图  1  2019年中山大学夏季南海科考航次航线图

    颜色标识距离出发的天数,实心菱形表明当天12:00(北京时间)所处的位置

    Fig.  1  Route map of South China Sea scientific expedition in summer of Sun Yat-sen University in 2019

    The color indicates the number of days from departure, and the solid diamond indicates the position at 12:00 (Beijing time) on the same day

    图  2  航次期间(共23 d)白天逐小时的观测(a)与ERA5(b)的向下短波辐射通量(Rd),以及二者的差值(c)。图d,e,f分别是图a,b,c对应的平均日变化

    图 f蓝色散点为ERA5的向下短波辐射通量(Rd)在不同时刻的相对偏差

    Fig.  2  The observed (a) and ERA5’s (b) downward shortwave radiation flux (Rd) in the daytime during the voyage (23 days). Figures d, e and f are the average daily variation corresponding to a, b and c respectively

    The blue points in figure f is the relative deviation of ERA5’ downward shortwave radiation flux (Rd) at different times

    图  3  航次期间(共23 d)白天逐小时的观测(a)与ERA5(b)的海表反照率(α),以及二者的差值(c)。图d,e,f分别是图a,b,c对应的平均日变化

    图 f 蓝色散点为ERA5的α在不同时刻的相对偏差

    Fig.  3  The observed (a) and ERA5’s (b) sea surface albedo (α) in the daytime during the voyage (23 days). Figures d, e and f are the average daily variation corresponding to a, b and c respectively

    The blue points in figure f is the relative deviation of ERA5’ α at different times

    图  4  航次期间(共23 d)白天逐小时的观测(a)与ERA5(b)的净短波辐射通量(Rnet),以及二者的差值(c)。图d,e,f分别是图a,b,c对应的平均日变化

    其中图 f 蓝色散点为ERA5的Rnet 在不同时刻的相对偏差

    Fig.  4  The observed (a) and ERA5’s (b) net shortwave radiation flux (Rnet) in the daytime during the voyage (23 days). Figures d, e and f are the average daily variation corresponding to a, b and c respectively

    The blue points in figure f is the relative deviation of ERA5’s Rnet at different times

    图  5  航次期间(共23 d)白天逐小时的观测(a)与ERA5(b)的大气透射率(τ),以及观测和ERA5为相同大气透射(晴天,混合天,阴天)的时刻(c)

    Fig.  5  Hourly atmospheric transmittance (τ) of observation (a) and ERA5 (b) during the voyage (23 days), and the time when the observation and ERA5 are the same atmospheric transmittance (c)

    图  6  观测与参数化得到的海表反照率在晴天(透射率>0.55)的比较

    a. Taylor 参数化方法;b. Briegleb 参数化方法;c. Hansen参数化方法;d. Huang参数化方法。图中红色虚线为拟合线,左上角列出对应的线性拟合方程,其中r为相关系数

    Fig.  6  Comparison of observed and parameterized albedos on clear-sky (atmospheric transmittance>0.55)

    a. Taylor’s method; b. Briegleb’s method; c. Hansen’s method; d. Huang’s method. The red dotted line in the figure is the fitting line, and the corresponding linear fitting equation is listed in the upper left corner, and r is the correlation coefficient

    图  7  反照率随太阳高度角的平均日变化(a),拟合反照率与实际观测的对比结果(b)

    图a中红线和蓝线分别为新方案结果和Taylor方案结果;b中填色为太阳高度角,红色虚线为两结果的拟合线方程,左上角为拟合线方程结果,r为相关系数

    Fig.  7  The average daily variation of albedo with solar altitude angle (a), and the comparison result between the fitting albedo and the observation (b)

    In figure a, the red line and blue line are the results of the new scheme and Taylor scheme respectively; in figure b, the color is filled with the solar altitude angle, the red dotted line is the fitting line equation of the two results, the upper left corner of the picture is the fitting line equation result, and r is the correlation coefficient

    图  8  观测(a)和ERA5(b)的海表反照率平均日变化

    图中红色、蓝色、黑色箱型图分别代表晴天混合天和阴天

    Fig.  8  The average diurnal variation of sea surface albedo observed (a) and ERA5 (b) respectively

    The red, blue and black box charts represent clear, mixed and cloudy sky conditions respectively

    图  9  本次观测散射辐射海表反照率的平均日变化箱型图

    图中红色、蓝色、黄色实线分别为Payne[9]、Séférian等[42]和本次观测的散射反照率

    Fig.  9  The box chart of the average daily variation of the scattered sea surface albedo from this observation

    The red, blue and yellow solid lines are Payne[9], Séférian et al[42] and the observed scattered sea surface albedo respectively

    表  1  海表反照率(α)贡献项、向下短波辐射通量(Rd )贡献项、协方差项和海表净短波辐射通量(ΔRnet)的平均日变化

    Tab.  1  Average daily variation of sea surface albedo contribution (α), downward shortwave radiation flux (Rd) contribution, covariate terms contribution and sea surface net shortwave radiation flux (ΔRnet) (unit: W/m2)

    时间α 贡献项Rd贡献项协方差项ΔRnet
    7:0023.8–18.1–6.2–0.5
    8:0035.4–58.28.1–31.0
    9:0035.6–38.7–3.9–7.0
    10:0035.6–35.7–0.6–0.7
    11:0030.5–75.4–1.4–46.3
    12:0019.5–85.61.2–64.8
    13:0015.0–34.91.8–18.1
    14:0021.7–39.90.6–17.6
    15:0029.6105.7–4.380.4
    16:0034.3–81.2–5.0–51.9
    17:0033.2–23.4–3.76.1
    18:0027.2–15.9–4.56.9
    平均值28.4–51.0–2.8–25.4
    注:每列的最大值用黑体表示。
    下载: 导出CSV

    表  2  不同透射率情景下ERA5和观测的海表反照率(α), 向下短波辐射通量(Rd )和海表净短波辐射通量(Rnet)的平均

    Tab.  2  Average of ERA5 and observed sea surface albedo (α), downward shortwave radiation flux (Rd) and sea surface net shortwave radiation flux (Rnet) under different atmospheric transmittance scenarios

    τ(样本数)观测 ERA5
    αRd/(W·m–2)Rnet/(W·m–2) αRd/(W·m–2)Rnet/(W·m–2)
    晴天(66)0.12710.03635.320.05645.73615.87
    混合天 (67)0.14382.96337.330.06385.95365.24
    阴天 (9)0.13153.32135.440.06212.47200.17
    下载: 导出CSV
  • [1] Groeskamp S, Iudicone D. The effect of air-sea flux products, shortwave radiation depth penetration, and albedo on the upper ocean overturning circulation[J]. Geophysical Research Letters, 2018, 45(17): 9087−9097. doi: 10.1029/2018GL078442
    [2] Zhang Yan, Wang Dongxiao, Xia Huayong, et al. The seasonal variability of an air-sea heat flux in the northern South China Sea[J]. Acta Oceanologica Sinica, 2012, 31(5): 79−86. doi: 10.1007/s13131-012-0238-4
    [3] 王举, 姚华栋, 蒋国荣, 等. 南海北部海区太阳辐射观测分析与计算方法研究[J]. 海洋与湖沼, 2005, 36(5): 385−393.

    Wang Ju, Yao Huadong, Jiang Guorong, et al. Analyses and calculation of solar radiation over northern South China Sea[J]. Oceanologia et Limnologia Sinica, 2005, 36(5): 385−393.
    [4] Hawcroft M, Haywood J M, Collins M, et al. Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model[J]. Climate Dynamics, 2017, 48(7/8): 2279−2295.
    [5] Sweeney C, Gnanadesikan A, Griffies S M, et al. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport[J]. Journal of Physical Oceanography, 2005, 35(6): 1103−1119. doi: 10.1175/JPO2740.1
    [6] Gabriel C J, Robock A, Xia Lili, et al. The G4Foam Experiment: global climate impacts of regional ocean albedo modification[J]. Atmospheric Chemistry and Physics, 2017, 17(1): 595−613. doi: 10.5194/acp-17-595-2017
    [7] Liang Shunlin. Comprehensive Remote Sensing[M]. Amsterdam: Elsevier, 2018.
    [8] Gupta S K, Ritchey N A, Wilber A C, et al. A climatology of surface radiation budget derived from satellite data[J]. Journal of Climate, 1999, 12(8): 2691−2710. doi: 10.1175/1520-0442(1999)012<2691:ACOSRB>2.0.CO;2
    [9] Payne R E. Albedo of the sea surface[J]. Journal of the Atmospheric Sciences, 1972, 29(5): 959−970. doi: 10.1175/1520-0469(1972)029<0959:AOTSS>2.0.CO;2
    [10] Taylor J P, Edwards J M, Glew M D, et al. Studies with a flexible new radiation code. II: comparisons with aircraft short-wave observations[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122(532): 839−861. doi: 10.1002/qj.49712253204
    [11] Katsaros K B, McMurdie L A, Lind R J, et al. Albedo of a water surface, spectral variation, effects of atmospheric transmittance, sun angle and wind speed[J]. Journal of Geophysical Research: Oceans, 1985, 90(C4): 7313−7321. doi: 10.1029/JC090iC04p07313
    [12] Jin Zhonghai, Charlock T P, Smith W L Jr, et al. A parameterization of ocean surface albedo[J]. Geophysical Research Letters, 2004, 31(22): L22301.
    [13] Zhou Fenghua, Zhang Rongwang, Shi Rui, et al. Processing of turbulent data and flux quality control of observed data from Yongxing Island in Spring 2016[J]. Journal of Coastal Research, 2018, 84: 114−124. doi: 10.2112/SI84-017.1
    [14] Decker M, Brunke M A, Wang Zhuo, et al. Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations[J]. Journal of Climate, 2012, 25(6): 1916−1944. doi: 10.1175/JCLI-D-11-00004.1
    [15] Govaerts Y M, Lattanzio A. Retrieval error estimation of surface albedo derived from geostationary large band satellite observations: application to Meteosat-2 and Meteosat-7 data[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D5): D05102.
    [16] Key J R, Schweiger A J, Stone R S. Expected uncertainty in satellite-derived estimates of the surface radiation budget at high latitudes[J]. Journal of Geophysical Research: Oceans, 1997, 102(C7): 15837−15847. doi: 10.1029/97JC00478
    [17] Huang Jingting, Arnott W P, Barnard J C, et al. Theoretical uncertainty analysis of satellite retrieved aerosol optical depth associated with surface albedo and aerosol optical properties[J]. Remote Sensing, 2021, 13(3): 344. doi: 10.3390/rs13030344
    [18] Smith S R, Alory G, Andersson A, et al. Ship-based contributions to global ocean, weather, and climate observing systems[J]. Frontiers in Marine Science, 2019, 6: 1−26. doi: 10.3389/fmars.2019.00434
    [19] Li J, Scinocca J, Lazare M, et al. Ocean surface albedo and its impact on radiation balance in climate models[J]. Journal of Climate, 2006, 19(24): 6314−6333. doi: 10.1175/JCLI3973.1
    [20] Enomoto T. Ocean surface albedo in AFES[J]. JAMSTEC Report of Research and Development, 2007, 6: 21−30. doi: 10.5918/jamstecr.6.21
    [21] 张一夫. 关于海面反照率的初步探讨[J]. 海洋学报, 1990, 12(1): 24−30.

    Zhang Yifu. A preliminary discussion on sea surface albedo[J]. Haiyang Xuebao, 1990, 12(1): 24−30.
    [22] Bengtsson L, Hagemann S, Hodges K I. Can climate trends be calculated from reanalysis data?[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D11): D11111. doi: 10.1029/2004JD004536
    [23] Fujiwara M, Wright J S, Manney G L, et al. Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems[J]. Atmospheric Chemistry and Physics, 2017, 17(2): 1417−1452. doi: 10.5194/acp-17-1417-2017
    [24] Trenberth K E, Koike T, Onogi K. Progress and prospects for reanalysis for weather and climate[J]. Eos, Transactions American Geophysical Union, 2008, 89(26): 234−235. doi: 10.1029/2008EO260002
    [25] Parker W S. Reanalyses and observations: what’s the difference?[J]. Bulletin of the American Meteorological Society, 2016, 97(9): 1565−1572. doi: 10.1175/BAMS-D-14-00226.1
    [26] Cao Yunfeng, Liang Shunlin, He Tao, et al. Evaluation of four reanalysis surface albedo data sets in arctic using a satellite product[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 384−388.
    [27] Trenberth K E, Fasullo J T. Simulation of present-day and twenty-first-century energy budgets of the southern oceans[J]. Journal of Climate, 2010, 23(2): 440−454. doi: 10.1175/2009JCLI3152.1
    [28] Hogikyan A, Cronin M F, Zhang Dongxiao, et al. Uncertainty in net surface heat flux due to differences in commonly used albedo products[J]. Journal of Climate, 2020, 33(1): 303−315. doi: 10.1175/JCLI-D-18-0448.1
    [29] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [30] ECMWF. IFS documentation CY41R2-Part IV: physical processes[EB/OL]. (2016–03–08)[2022–01–04]. https://www.ecmwf.int/en/elibrary/79697-ifs-documentation-cy41r2-part-iv-physical-processes.
    [31] Urraca R, Huld T, Gracia-Amillo A, et al. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data[J]. Solar Energy, 2018, 164: 339−354. doi: 10.1016/j.solener.2018.02.059
    [32] Janjić T, Bormann N, Bocquet M, et al. On the representation error in data assimilation[J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144(713): 1257−1278. doi: 10.1002/qj.3130
    [33] Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun’s glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838−850. doi: 10.1364/JOSA.44.000838
    [34] Feng Youbin, Liu Qiang, Qu Ying, et al. Estimation of the ocean water albedo from remote sensing and meteorological reanalysis data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 850−868. doi: 10.1109/TGRS.2015.2468054
    [35] 曹畅, 李旭辉, 张弥, 等. 太湖湖表反照率时空特征及影响因子[J]. 环境科学, 2015, 36(10): 3611−3619.

    Cao Chang, Li Xuhui, Zhang Mi, et al. Temporal and spatial characteristics of Lake Taihu surface albedo and its impact factors[J]. Environmental Science, 2015, 36(10): 3611−3619.
    [36] 王丹, 盛立芳. 东海海面辐射特征及影响因子分析[J]. 中国海洋大学学报(自然科学版), 2010, 40(12): 8−16.

    Wang Dan, Sheng Lifang. Analysis of characteristics of sea-surface radiation and its impact factors in East China Sea[J]. Periodical of Ocean University of China, 2010, 40(12): 8−16.
    [37] Huang Chuanjiang, Qiao Fangli, Chen Siyu, et al. Observation and parameterization of broadband sea surface albedo[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 4480−4491. doi: 10.1029/2018JC014444
    [38] Sinnett G, Feddersen F. Observations and parameterizations of surfzone albedo[J]. Methods in Oceanography, 2016, 17: 319−334. doi: 10.1016/j.mio.2016.07.001
    [39] Briegleb B P, Minnis P, Ramanathan V, et al. Comparison of regional clear-sky albedos inferred from satellite observations and model computations[J]. Journal of Applied Meteorology and Climatology, 1986, 25(2): 214−226. doi: 10.1175/1520-0450(1986)025<0214:CORCSA>2.0.CO;2
    [40] Hansen J, Russell G, Rind D, et al. Efficient three-dimensional global models for climate studies: models I and II[J]. Monthly Weather Review, 1983, 111(4): 609−662. doi: 10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2
    [41] Sinnett G, Feddersen F. The nearshore heat budget: effects of stratification and surfzone dynamics[J]. Journal of Geophysical Research: Oceans, 2019, 124(11): 8219−8240. doi: 10.1029/2019JC015494
    [42] Séférian R, Baek S, Boucher O, et al. An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A)[J]. Geoscientific Model Development, 2018, 11(1): 321−338. doi: 10.5194/gmd-11-321-2018
    [43] Preisendorfer R W, Mobley C D. Albedos and glitter patterns of a wind-roughened sea surface[J]. Journal of Physical Oceanography, 1986, 16(7): 1293−1316. doi: 10.1175/1520-0485(1986)016<1293:AAGPOA>2.0.CO;2
    [44] Jin Zhonghai, Qiao Yanli, Wang Yingjian, et al. A new parameterization of spectral and broadband ocean surface albedo[J]. Optics Express, 2011, 19(27): 26429−26443. doi: 10.1364/OE.19.026429
    [45] 崔生成, 朱文越, 李学彬, 等. 0.4~14 μm中国海域海表反照率时空分布特性[J]. 红外与激光工程, 2018, 47(12): 1212001. doi: 10.3788/IRLA201847.1212001

    Cui Shengcheng, Zhu Wenyue, Li Xuebin, et al. Spatiotemporal distributions of 0.4−14 μm ocean surface albedo over China Sea areas[J]. Infrared and Laser Engineering, 2018, 47(12): 1212001. doi: 10.3788/IRLA201847.1212001
    [46] 杨倩, 贺明霞. 风生海中气泡对海洋光学反射比的影响[J]. 中国海洋大学学报(自然科学版), 2012, 42(1/2): 153−156.

    Yang Qian, He Mingxia. Effects of wind-generated bubbles on ocean reflectance[J]. Periodical of Ocean University of China, 2012, 42(1/2): 153−156.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  588
  • HTML全文浏览量:  246
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-05-23
  • 网络出版日期:  2023-02-13
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回