留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合效应模型的海州湾方氏云鳚的生长动态及其影响因素分析

赵天亚 杨晓改 李勋 薛莹 徐宾铎 纪毓鹏 任一平 张崇良

赵天亚,杨晓改,李勋,等. 基于混合效应模型的海州湾方氏云鳚的生长动态及其影响因素分析[J]. 海洋学报,2023,45(1):53–61 doi: 10.12284/hyxb2023028
引用本文: 赵天亚,杨晓改,李勋,等. 基于混合效应模型的海州湾方氏云鳚的生长动态及其影响因素分析[J]. 海洋学报,2023,45(1):53–61 doi: 10.12284/hyxb2023028
Zhao Tianya,Yang Xiaogai,Li Xun, et al. Growth dynamics of Pholis fangi in Haizhou Bay and influencing factors explored by mixed-effect models[J]. Haiyang Xuebao,2023, 45(1):53–61 doi: 10.12284/hyxb2023028
Citation: Zhao Tianya,Yang Xiaogai,Li Xun, et al. Growth dynamics of Pholis fangi in Haizhou Bay and influencing factors explored by mixed-effect models[J]. Haiyang Xuebao,2023, 45(1):53–61 doi: 10.12284/hyxb2023028

基于混合效应模型的海州湾方氏云鳚的生长动态及其影响因素分析

doi: 10.12284/hyxb2023028
基金项目: 国家重点研发计划(2018YFD0900906)。
详细信息
    作者简介:

    赵天亚(2002-),男,山东省菏泽市人,主要从事渔业资源评估。E-mail: zhaotianya0519@163.com

    通讯作者:

    张崇良,副教授,主要从事渔业资源评估与生态系统模拟。E-mail: zhangclg@ouc.edu.cn

  • 中图分类号: S932.4

Growth dynamics of Pholis fangi in Haizhou Bay and influencing factors explored by mixed-effect models

  • 摘要: 本研究利用2015−2019年海州湾方氏云鳚(Pholis fangi)耳石样本,基于线性混合效应模型(LMEM)研究了方氏云鳚在2013−2018年内生长速度的年际变化,评估了不同年龄阶段的方氏云鳚的生长对底层温度、叶绿素含量和种群密度等外界因素的响应。结果表明:方氏云鳚个体在不同年龄的耳石增量具有明显差异,0龄平均耳石增量为0.327 mm,显著高于高龄耳石增量。模型随机效应表明,方氏云鳚的生长速度在2013−2016年呈现逐步变快的趋势,在2016−2018年波动较为明显。方氏云鳚0龄时期生长速度的主要影响因素为底层温度和种群密度,其生长速度随温度的上升先加快后降低,随种群密度的增加而降低。方氏云鳚1龄时期的生长速度受底层温度和饵料等环境因素的影响不显著,体现了成体对环境的适应能力。本研究深入解析了鱼类的生长动态对生物和非生物因素的响应,有助于应对未来气候变化对渔业生态系统的影响。
  • 图  1  海州湾及邻近海域调查区域

    Fig.  1  Survey areas in Haizhou Bay and its adjacent waters

    图  2  海州湾方氏云鳚耳石增量随年龄的变化

    Fig.  2  Change in otolith increment of in Pholis fangi Haizhou Bay with different ages

    图  3  内因模型的年龄与年份效应

    耳石增量年际变化由最优内因模型中年份随机效应估算得出,图中灰色区域为估算值±标准差

    Fig.  3  Age and Year effects of the intrinsic model

    Interannual variation of otolith increment are estimated by the Year random effect in the best intrinsic model, and the gray area is estimated value±SE

    图  4  全年平均底层温度对方氏云鳚耳石增量的影响

    Fig.  4  Effect of annual average bottom temperature on otolith increment of Pholis fangi

    图  5  环境因子对方氏云鳚0龄耳石增量的影响

    Fig.  5  Effect of environmental factors on otolith increment of Pholis fangi at age 0

    表  1  方氏云不同年龄耳石增量的变异性

    Tab.  1  Variation of otolith increment of Pholis fangiat different ages

    年龄/a耳石增量范围/mm平均值/mm标准差变异系数/%
    00.194~0.3990.3270.0288.68
    10.124~0.2830.2040.03617.77
    20.093~0.2110.1510.03019.81
    30.090~0.1460.1160.02521.15
    下载: 导出CSV

    表  2  内因模型的拟合

    Tab.  2  Fitting of the best intrinsic model

    模型固定效应随机效应AICc边际R2条件R2
    M1Age(1|FishID)−934.110.8410.845
    M2Age(1|FishID)+(1|Cohort)−932.100.8410.844
    M3Age(1|FishID)+(1|Year)−940.770.8350.859
      注:(1|FishID)、(1|Cohort)和(1|Year)分别为个体编号、世代和年份的截距随机效应;Age为年龄固定效应。
    下载: 导出CSV

    表  3  因子多重共线性检验结果

    Tab.  3  Results of multicollinearity test of factors

    因子全年春季夏季秋季冬季
    底层温度1.0414.0482.3566.1453.280
    叶绿素含量2.2822.4032.2502.2802.496
    种群密度2.2332.1461.0804.1741.568
    注: 表中数字为方差膨胀因子。
    下载: 导出CSV

    表  4  最优外因模型筛选结果

    Tab.  4  Results of best extrinsic models screening

    年龄模型模型结构AICcR2
    0龄Model 1BT−467.350.229
    Model 2SprBT + Chl + Den−470.490.283
    Model 3SumBT + SumBT2−467.590.247
    Model 4AutBT + AutBT2 + Chl−469.390.275
    Model 5WinBT + Chl + Den−473.100.301
    1龄Model 6BT−349.980.025
    Model 7SprBT−349.240.017
    Model 8SumBT−349.230.017
    Model 9Den+Chl−348.160.029
    Model 10WinBT−348.460.009
      注: BT、SprBT、SumBT、AutBT、WinBT、Chl和Den分别代表全年平均底温、春季平均底温、夏季平均底温、秋季平均底温、冬季平均底温、叶绿素含量和种群密度。
    下载: 导出CSV
  • [1] Schwamborn R, Mildenberger T K, Taylor M H. Assessing sources of uncertainty in length-based estimates of body growth in populations of fishes and macroinvertebrates with bootstrapped ELEFAN[J]. Ecological Modelling, 2019, 393: 37−51. doi: 10.1016/j.ecolmodel.2018.12.001
    [2] 任晓明, 徐宾铎, 张崇良, 等. 海州湾及邻近海域鱼类群落的营养功能群及其动态变化[J]. 中国水产科学, 2019, 26(1): 141−150. doi: 10.3724/SP.J.1118.2019.18149

    Ren Xiaoming, Xu Binduo, Zhang Chongliang, et al. The composition of and variations in the trophic guilds of fish assemblages in Haizhou Bay and adjacent waters[J]. Journal of Fishery Sciences of China, 2019, 26(1): 141−150. doi: 10.3724/SP.J.1118.2019.18149
    [3] Brander K. Impacts of climate change on fisheries[J]. Journal of Marine Systems, 2010, 79(3/4): 389−402.
    [4] 王琨, 张崇良, 陈宁, 等. 基于Bootstrap的ELEFAN方法在评估方氏云鳚群体生长参数中的应用[J]. 中国水产科学, 2019, 26(3): 512−521. doi: 10.3724/SP.J.1118.2019.18329

    Wang Kun, Zhang Chongliang, Chen Ning, et al. Evaluating the growth parameters of Pholis fangi based on the Bootstrap-ELEFAN method[J]. Journal of Fishery Sciences of China, 2019, 26(3): 512−521. doi: 10.3724/SP.J.1118.2019.18329
    [5] Zuur A F, Ieno E N, Walker N J, et al. Mixed Effects Models and Extensions in Ecology with R[M]. New York: Springer, 2009.
    [6] Ma Qiuyun, Jiao Yan, Ren Yiping. Linear mixed-effects models to describe length-weight relationships for yellow croaker (Larimichthys polyactis) along the north coast of China[J]. PLoS One, 2017, 12(2): e0171811. doi: 10.1371/journal.pone.0171811
    [7] Mu Xiuxia, Zhang Chongliang, Xu Binduo, et al. Varying growth rates of a marine eel, the whitespotted conger (Conger myriaster), are explained by the interaction between seasonal temperature and prey availability[J]. Marine Biology, 2022, 169(1): 6. doi: 10.1007/s00227-021-03976-y
    [8] Xu Binduo, Zhang Chongliang, Xue Ying, et al. Optimization of sampling effort for a fishery-independent survey with multiple goals[J]. Environmental Monitoring and Assessment, 2015, 187(5): 252. doi: 10.1007/s10661-015-4483-9
    [9] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763. 6−2007, 海洋调查规范, 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 12763.6−2007, Specifications for oceanographic survey. Part 6: Marine biological survey[S]. Beijing: Standards Press of China, 2007.
    [10] Xing Qinwang, Yu Huaming, Yu Haiqing, et al. A comprehensive model-based index for identification of larval retention areas: a case study for Japanese anchovy Engraulis japonicus in the Yellow Sea[J]. Ecological Indicators, 2020, 116: 106479. doi: 10.1016/j.ecolind.2020.106479
    [11] Sugiura N. Further analysts of the data by akaike’s information criterion and the finite corrections: Further analysts of the data by akaike’s[J]. Communications in Statistics-Theory and Methods, 1978, 7(1): 13−26. doi: 10.1080/03610927808827599
    [12] Hwang S D, Lee T W, Hwang S W. Age, growth and life history of gunnel, Pholis fangi, in the Yellow Sea[J]. Fisheries Research, 2008, 93(1−2): 72−76. doi: 10.1016/j.fishres.2008.02.011
    [13] Gao Guandong, Marin M, Feng Ming, et al. Drivers of marine heatwaves in the East China Sea and the South Yellow Sea in three consecutive summers during 2016–2018[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2020JC016518.
    [14] Stokes K, Law R. Fishing as an evolutionary force[J]. Marine Ecology Progress Series, 2000, 208: 307−309.
    [15] 毕远溥. 方氏云鳚渔业生物学及其在辽宁沿海的渔业[J]. 水产科学, 2005, 24(9): 27−28. doi: 10.3969/j.issn.1003-1111.2005.09.009

    Bi Yuanpu. Biology and its fishery of Fang’s blenny Enedrias fangi Wang et Wang in offshore in Liaoning Province[J]. Fisheries Science, 2005, 24(9): 27−28. doi: 10.3969/j.issn.1003-1111.2005.09.009
    [16] 于非, 张志欣, 刁新源, 等. 黄海冷水团演变过程及其与邻近水团关系的分析[J]. 海洋学报, 2006, 28(5): 26−34.

    Yu Fei, Zhang Zhixin, Diao Xinyuan, et al. Analysis of evolution of the Huanghai Sea cold water mass and its relationship with adjacent water masses[J]. Haiyang Xuebao, 2006, 28(5): 26−34.
    [17] 李敏, 李增光, 徐宾铎, 等. 时空和环境因子对海州湾方氏云鳚资源丰度分布的影响[J]. 中国水产科学, 2015, 22(4): 812−819.

    Li Min, Li Zengguang, Xu Binduo, et al. Effects of spatiotemporal and environmental factors on the distribution and abundance of Pholis fangi in Haizhou Bay using a generalized additive model[J]. Journal of Fishery Sciences of China, 2015, 22(4): 812−819.
    [18] 张崇良, 徐宾铎, 薛莹, 等. 渔业资源增殖评估研究进展与展望[J]. 水产学报, 2022, 46(8): 1509−1524.

    Zhang Chongliang, Xu Binduo, Xue Ying, et al. Fisheries stock enhancement assessment: Progress and prospect[J]. Journal of Fisheries of China, 2022, 46(8): 1509−1524.
    [19] Lorenzen K, Enberg K. Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2002, 269(1486): 49−54. doi: 10.1098/rspb.2001.1853
    [20] Fowler C W. Density dependence as related to life history strategy[J]. Ecology, 1981, 62(3): 602−610. doi: 10.2307/1937727
    [21] Fey D P. The effect of temperature and somatic growth on otolith growth: the discrepancy between two clupeid species from a similar environment[J]. Journal of Fish Biology, 2006, 69(3): 794−806. doi: 10.1111/j.1095-8649.2006.01151.x
    [22] Ward A J W, Webster M M, Hart P J B. Intraspecific food competition in fishes[J]. Fish and Fisheries, 2006, 7(4): 231−261. doi: 10.1111/j.1467-2979.2006.00224.x
    [23] Andersson A, Haecky P, Hagström Å. Effect of temperature and light on the growth of micro-nano-and pico-plankton: impact on algal succession[J]. Marine Biology, 1994, 120(4): 511−520. doi: 10.1007/BF00350071
    [24] Mazumder A, Taylor W D, McQueen D J, et al. Effects of fish and plankton on lake temperature and mixing depth[J]. Science, 1990, 247(4940): 312−315. doi: 10.1126/science.247.4940.312
    [25] Schlosser I J. Fish recruitment, dispersal, and trophic interactions in a heterogeneous lotic environment[J]. Oecologia, 1998, 113(2): 260−268. doi: 10.1007/s004420050377
    [26] Dettmers J M, Wahl D H. Evidence for zooplankton compensation and reduced fish growth in response to increased juvenile fish density[J]. Hydrobiologia, 1999, 400: 115−121. doi: 10.1023/A:1003767331606
    [27] Hilborn R, Walters C J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty[M]. New York: Springer, 1992.
    [28] 刘逸文, 张崇良, 刘淑德, 等. 山东近海口虾蛄单位补充量渔获量评估[J]. 水产学报, 2020, 44(2): 213−221.

    Liu Yiwen, Zhang Chongliang, Liu Shude, et al. Yield per recruitment evaluation of Oratosquilla oratoria in coastal waters of Shandong[J]. Journal of Fisheries of China, 2020, 44(2): 213−221.
    [29] Shin Y J, Cury P. Exploring fish community dynamics through size-dependent trophic interactions using a spatialized individual-based model[J]. Aquatic Living Resources, 2001, 14(2): 65−80. doi: 10.1016/S0990-7440(01)01106-8
    [30] Sekigawa T, Takahashi T, Takatsu T. Age and growth of fat greenling Hexagrammos otakii in Kikonai Bay, Hokkaido[J]. Aquaculture Science, 2002, 50(4): 395−400.
    [31] Morrongiello J R, Thresher R E. A statistical framework to explore ontogenetic growth variation among individuals and populations: a marine fish example[J]. Ecological Monographs, 2015, 85(1): 93−115. doi: 10.1890/13-2355.1
    [32] 姜志强, 秦克静. 大连地区方氏云鳚的年龄和生长[J]. 大连水产学院学报, 1990(1): 33−41.

    Jiang Zhiqiang, Qin Kejing. Age and growth of Enedrias Fangi in Dalian[J]. Journal of Dalian Ocean University, 1990(1): 33−41.
    [33] Battaglia P, Malara D, Romeo T, et al. Relationships between otolith size and fish size in some mesopelagic and bathypelagic species from the Mediterranean Sea (Strait of Messina, Italy)[J]. Scientia Marina, 2010, 74(3): 605−612. doi: 10.3989/scimar.2010.74n3605
    [34] Morales-Nin B. Review of the growth regulation processes of otolith daily increment formation[J]. Fisheries Research, 2000, 46(1/3): 53−67.
    [35] 朱建成, 赵宪勇, 李富国. 黄海鳀鱼的生长特征及其年际与季节变化[J]. 海洋水产研究, 2007, 28(3): 64−72.

    Zhu Jiancheng, Zhao Xianyong, Li Fuguo. Growth characters of the anchovy stock in the Yellow Sea with its annual and seasonal variations[J]. Marine Fisheries Reseach, 2007, 28(3): 64−72.
    [36] Newman D, Carruthers T, MacCall A, et al. Improving the science and management of data-limited fisheries: an evaluation of current methods and recommended approaches[R]. New York: Natural Resources Defense Council, 2014.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  113
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-13
  • 修回日期:  2022-09-16
  • 网络出版日期:  2022-09-29
  • 刊出日期:  2023-01-09

目录

    /

    返回文章
    返回