Seasonal and spatial changes in functional diversity of fish communities in the adjacent waters of the Changshan Islands
-
摘要: 为查明黄、渤海生态交错带长山列岛邻近海域鱼类功能多样性的时空变化,根据2016−2017年在长山列岛邻近海域开展的鱼类生物资源和环境因子的调查数据,结合食性、营养级、洄游类型、适温性、恢复力和鱼卵类型等13种功能性状,应用群落特征加权平均数指数、功能多样性指数和Spearman秩相关分析等方法,研究了该海域鱼类功能多样性的季节变化、空间格局及其与环境因子的关系。结果表明,春、冬季的优势类群为端位或上位口、生长系数较低、脆弱性较高、恢复力较低、定居或短距离洄游的平扁形、暖温性底层鱼类,夏、秋季表现出更多的功能性状,例如长距离洄游、栖息位置处于中上层、体型为侧扁形和纺锤形等;夏、秋季的功能丰富度指数显著高于春、冬季,功能均匀度指数在春季最高,功能离散度指数在秋季最低且显著低于其他季节;春季功能均匀度指数和春、秋季功能离散度指数均表现出西高东低的分布趋势,夏、冬季的功能丰富度指数和秋季的功能均匀度指数均表现出东高西低的分布趋势;功能多样性指数与环境因子具有一定的相关性。长山列岛邻近海域作为黄、渤海生态交错带,鱼类洄游引起优势功能性状和功能多样性呈现出一定的季节变化,环境因子的变化使得功能多样性的空间格局表现出复杂性、异质性的特点。Abstract: In order to identify the functional diversity of the adjacent waters of the Changshan Islands in the ecotone between the Yellow Sea and the Bohai Sea, based on the quarterly survey of fish biological resources and environment factors from October 2016 to August 2017, combined with 13 functional traits such as feeding habit, trophic level, migration type, thermophily, resilience and fish eggs type, the spatio-temporal pattern of functional diversity and its relationship with environmental factors were studied by using community weighted mean index (CWM), functional diversity index and Spearman rank correlation analysis. The results showed that the dominant species of fish community in spring and winter were depressiform, warm temperate and demersal species with the characteristics of anterior or upper mouth, low growth coefficient, high vulnerability, low resilience and non-migration or short distance migration. The dominant species in summer and autumn showed more functional traits, such as long distance migration, pelagic, fusiform and compressiform. FRic in summer and autumn was significantly higher than that in spring and winter, FEve was the highest in spring, and FDiv was the lowest in autumn and was significantly lower than other seasons. FEve in spring and season and FDiv in spring and autumn showed a trend of high in the west and low in the east, while FRic in summer and winter and FEve in autumn showed a trend of high in the east and low in the west. There was a certain correlation between environmental factors and functional diversity index. As an ecotone between the Yellow Sea and the Bohai Sea, the functional traits of the dominant species and functional diversity show seasonal variations made by the fish migration, and the spatial pattern of functional diversity shows complexity and heterogeneity made by environment changing in the adjacent waters of the Changshan Islands.
-
图 2 长山列岛邻近海域鱼类群落特征加权平均数指数(CWM)的季节变化
P. 浮游生物食性;B. 底栖生物食性;N. 游泳动物食性;1. 纺锤形;2. 侧扁形;3. 平扁形;4. 鳗形;SM. 近海洄游型;LM. 外海洄游型;Lo. 定居型;T. 暖温性;WW. 暖水性;De. 底层;Pe. 中上层;M. 中等恢复力;H. 高恢复力;L. 低恢复力;PE. 浮性卵;AE. 附着性卵;PAE. 黏着浮性卵;Sp. 春季;Su. 夏季;Au. 秋季;Wi. 冬季
Fig. 2 Seasonal variation of community weighted mean index (CWM) of fish community in the adjacent waters of the Changshan Islands
P. Planktivorous; B: benthivorous; N. nektivorous; 1. fusiform; 2. compressiform; 3. depressiform; 4. anguilliform; SM. offshore migration; LM. far-sea migration; Lo. local species; T. warm temperate; WW. warm water; De. demersal; Pe. pelagic; M. medium resilience; H. high resilience; L. low resilience; PE. pelagic eggs; AE. adhesive eggs; PAE. pelagic adhesive eggs; Sp. spring; Su. summer; Au. autumn; Wi. winter
图 3 长山列岛邻近海域鱼类群落功能多样性指数的季节变化
Sp. 春季;Su. 夏季;Au. 秋季;Wi. 冬季;不同字母表示差异显著(p<0.05);虚线代表真实值
Fig. 3 Seasonal variation of functional diversity indices of fish community in the adjacent waters of the Changshan Islands
Sp. Spring; Su. summer; Au. autumn; Wi. winter; different letters mean significant difference at p<0.05 level; dashed lines represent the true values
表 1 功能性状分类标准及其所含类型
Tab. 1 Classification criteria and types of functional traits
功能类型 功能性状 功能性状所含类型 摄食 食性 浮游生物食性、植食性、
底栖生物食性、游泳动物食性口的大小 小、较小、中等、较大、大 口的位置 腹面、下位、端位、上位 营养级 连续变量,范围:2.9~5.0 游泳 体型 纺锤形、侧扁形、平扁形、鳗形、
不对称形、亚圆柱形、细长形、
带形、前部宽扁形、后部侧扁形洄游类型 定居型、近海洄游型、远海洄游型 最大体长 连续变量,范围:9~250 cm 生态适应性 适温性 冷温性、暖温性、暖水性 栖息位置 底层、中上层 种群动态 生长系数 连续变量,范围:0.1~0.8 脆弱性 连续变量,范围:10~78 恢复力 低、中等、高 繁殖 鱼卵类型 浮性、沉性、附着性、
黏着浮性、黏着沉性、卵胎生表 2 长山列岛邻近海域鱼类群落功能多样性指数与环境因子的Spearman秩相关系数
Tab. 2 Spearman rank correlation coefficients between functional diversity indices and environmental factors in the adjacent waters of the Changshan Islands
季节 指数 水深 底层水温 表层水温 底层盐度 表层盐度 春季 FRic −0.300 0.104 −0.117 −0.232 −0.193 FEve −0.276 0.367* 0.212 −0.176 −0.129 FDiv −0.013 0.023 0.003 −0.080 −0.088 夏季 FRic 0.250 −0.491** −0.280 0.342 −0.212 FEve 0.224 −0.052 0.310 0.113 −0.172 FDiv 0.220 −0.328 −0.380* 0.010 0.154 秋季 FRic 0.166 −0.269 −0.197 0.060 0.071 FEve 0.033 0.033 −0.054 0.081 0.076 FDiv 0.092 −0.041 −0.121 0.156 0.141 冬季 FRic 0.568** 0.617** 0.639** 0.491** 0.487** FEve −0.131 −0.456** −0.440* −0.291 −0.288 FDiv 0.090 −0.040 −0.073 0.068 0.068 注:*代表p<0.05;**代表p<0.01。 -
[1] 程馨雨, 陶捐, 武瑞东, 等. 淡水鱼类功能生态学研究进展[J]. 生态学报, 2019, 39(3): 810−822.Cheng Xinyu, Tao Juan, Wu Ruidong, et al. Functional ecology of freshwater fish: research progress and prospects[J]. Acta Ecologica Sinica, 2019, 39(3): 810−822. [2] 江小雷, 张卫国. 功能多样性及其研究方法[J]. 生态学报, 2010, 30(10): 2766−2773.Jiang Xiaolei, Zhang Weiguo. Functional diversity and its research method[J]. Acta Ecologica Sinica, 2010, 30(10): 2766−2773. [3] 陈又清. 功能多样性——生物多样性与生态系统功能关系研究的新视角[J]. 云南大学学报(自然科学版), 2017, 39(6): 1082−1088.Chen Youqing. Functional diversity—a new view point in the relationship between biodiversity and ecosystem functioning research[J]. Journal of Yunnan University (Natural Sciences Edition), 2017, 39(6): 1082−1088. [4] Dı́az S, Cabido M. Vive la difference: plant functional diversity matters to ecosystem processes[J]. Trends in Ecology & Evolution, 2001, 16(11): 646−655. [5] Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystem processes[J]. Science, 1997, 277(5330): 1300−1302. doi: 10.1126/science.277.5330.1300 [6] 李晓玲, 刘洋, 王丛丛, 等. 基于环境DNA技术的夏季东海鱼类物种多样性研究[J]. 海洋学报, 2022, 44(4): 74−84.Li Xiaoling, Liu Yang, Wang Congcong, et al. Study on fish species diversity in the East China Sea in summer based on environmental DNA technology[J]. Haiyang Xuebao, 2022, 44(4): 74−84. [7] 陈爽, 陈新军. 东北大西洋北海渔场鱼类群落结构年际变化研究[J]. 海洋学报, 2019, 41(6): 64−75.Chen Shuang, Chen Xinjun. Study on the interannual variations in community structure in the North Sea of Northeast Atlantic[J]. Haiyang Xuebao, 2019, 41(6): 64−75. [8] Troast B, Paperno R, Cook G S, et al. Multidecadal shifts in fish community diversity across a dynamic biogeographic transition zone[J]. Diversity and Distributions, 2020, 26(1): 93−107. doi: 10.1111/ddi.13000 [9] 李雪童, 徐宾铎, 薛莹, 等. 海州湾秋季鱼类β多样性组分分析及其与环境因子的关系[J]. 海洋学报, 2022, 44(2): 46−56.Li Xuetong, Xu Binduo, Xue Ying, et al. β diversity and its components of the fish community in the Haizhou Bay during autumn and the relationships with environmental factors[J]. Haiyang Xuebao, 2022, 44(2): 46−56. [10] Ferrier S, Manion G, Elith J, et al. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment[J]. Diversity and Distributions, 2007, 13(3): 252−264. doi: 10.1111/j.1472-4642.2007.00341.x [11] 王娇, 张崇良, 薛莹, 等. 黄河口鱼类群落分类学多样性的研究[J]. 海洋学报, 2018, 40(4): 86−95.Wang Jiao, Zhang Chongliang, Xue Ying, et al. Taxonomic diversity of fish community in the Yellow River Estuary[J]. Haiyang Xuebao, 2018, 40(4): 86−95. [12] 戴小杰, 杨志金, 田思泉, 等. 浙江南部近海鱼类分类多样性研究[J]. 海洋学报, 2019, 41(8): 43−51.Dai Xiaojie, Yang Zhijin, Tian Siquan, et al. Taxonomic diversity of fish species in the off southern Zhejiang, East China Sea[J]. Haiyang Xuebao, 2019, 41(8): 43−51. [13] Rogers S I, Clarke K R, Reynolds C. The taxonomic distinctness of coastal bottom-dwelling fish communities of the North-east Atlantic[J]. Journal of Animal Ecology, 1999, 68(4): 769−782. doi: 10.1046/j.1365-2656.1999.00327.x [14] Clarke K R, Warwick R M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation[M]. 2nd ed. Plymouth: Plymouth Marine Laboratory, 2001. [15] Villéger S, Brosse S, Mouchet M, et al. Functional ecology of fish: current approaches and future challenges[J]. Aquatic Sciences, 2017, 79(4): 783−801. doi: 10.1007/s00027-017-0546-z [16] Villéger S, Mason N W H, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology[J]. Ecology, 2008, 89(8): 2290−2301. doi: 10.1890/07-1206.1 [17] Petchey O L, Gaston K J. Functional diversity: back to basics and looking forward[J]. Ecology Letters, 2006, 9(6): 741−758. doi: 10.1111/j.1461-0248.2006.00924.x [18] 张晓妆, 王晶, 徐宾铎, 等. 海州湾鱼类群落功能多样性的时空变化[J]. 应用生态学报, 2019, 30(9): 3233−3244.Zhang Xiaozhuang, Wang Jing, Xu Binduo, et al. Spatio-temporal variations of functional diversity of fish communities in Haizhou Bay[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3233−3244. [19] 贺佳云, 张东, 储玲, 等. 人为干扰对溪流鱼类功能多样性及其纵向梯度格局的影响[J]. 生物多样性, 2021, 29(7): 927−937. doi: 10.17520/biods.2020434He Jiayun, Zhang Dong, Chu Ling, et al. Anthropogenic disturbances affect the functional diversity of stream fishes and its longitudinal patterns in China[J]. Biodiversity Science, 2021, 29(7): 927−937. doi: 10.17520/biods.2020434 [20] 帅方敏, 李新辉, 陈方灿, 等. 淡水鱼类功能多样性及其研究方法[J]. 生态学报, 2017, 37(15): 5228−5237.Shuai Fangmin, Li Xinhui, Chen Fangcan, et al. Functional diversity of freshwater fishes and methods of measurement[J]. Acta Ecologica Sinica, 2017, 37(15): 5228−5237. [21] Arantes C C, Winemiller K O, Asher A, et al. Floodplain land cover affects biomass distribution of fish functional diversity in the Amazon River[J]. Scientific Reports, 2019, 9(1): 16684. doi: 10.1038/s41598-019-52243-0 [22] 郑鹏, 蒋小明, 曹亮, 等. 江湖阻隔背景下东部平原湖泊鱼类功能特征及多样性变化[J]. 湖泊科学, 2022, 34(1): 151−161. doi: 10.18307/2022.0114Zheng Peng, Jiang Xiaoming, Cao Liang, et al. Long-term changes in the functional trait composition and diversity of fish assemblages in eastern plain lakes under the regime of river-lake connectivity loss[J]. Journal of Lake Sciences, 2022, 34(1): 151−161. doi: 10.18307/2022.0114 [23] Fontrodona-Eslava A, Deacon A E, Ramnarine I W, et al. Numerical abundance and biomass reveal different temporal trends of functional diversity change in tropical fish assemblages[J]. Journal of Fish Biology, 2021, 99(3): 1079−1086. doi: 10.1111/jfb.14812 [24] Zhang Xiaozhuang, Xue Ying, Zhang Chongliang, et al. Sampling intensity influences the estimation of functional diversity indices of fish communities[J]. Ecological Indicators, 2021, 121: 107169. doi: 10.1016/j.ecolind.2020.107169 [25] 冯晨, 何雄波, 招春旭, 等. 闽江口鱼类功能多样性[J]. 应用生态学报, 2019, 30(10): 3589−3595. doi: 10.13287/j.1001-9332.201910.040Feng Chen, He Xiongbo, Zhao Chunxu, et al. Functional diversity of fishes in the Minjiang Estuary, Southeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3589−3595. doi: 10.13287/j.1001-9332.201910.040 [26] 郑东, 张瑞安. 烟威及石岛近海春季水团分析[J]. 海洋通报, 1983, 2(1): 61−68.Zheng Dong, Zhang Ruian. Analysis of spring water masses in the sea area off Yantai, Weihai and Shidao[J]. Marine Science Bulletin, 1983, 2(1): 61−68. [27] 石强. 渤、黄海风生流场季节循环时空模态与变异[J]. 应用海洋学学报, 2018, 37(4): 480−495. doi: 10.3969/J.ISSN.2095-4972.2018.04.004Shi Qiang. Spatio-temporal modes and variation on the seasonal cycle of wind-driven current field in the Bohai Sea and the Yellow Sea[J]. Journal of Applied Oceanography, 2018, 37(4): 480−495. doi: 10.3969/J.ISSN.2095-4972.2018.04.004 [28] 李昂, 于非, 刁新源, 等. 北黄海冷水团温度年际变化研究[J]. 海洋学报, 2015, 37(1): 30−42.Li Ang, Yu Fei, Diao Xinyuan, et al. Interannual variability of temperature of the northern Yellow Sea Cold Water Mass[J]. Haiyang Xuebao, 2015, 37(1): 30−42. [29] 曹友华, 朱乾坤. 基于Aqua/MODIS数据研究黄海暖流的强度及其时空变化[J]. 海洋预报, 2021, 38(6): 93−102. doi: 10.11737/j.issn.1003-0239.2021.06.010Cao Youhua, Zhu Qiankun. Study on the intensity and temporal and spatial variation of Yellow Sea Warm Current based on Aqua/MODIS data[J]. Marine Forecasts, 2021, 38(6): 93−102. doi: 10.11737/j.issn.1003-0239.2021.06.010 [30] 《中国海岛志》编纂委员会. 中国海岛志. 山东卷. 第1册, 山东北部沿岸[M]. 北京: 海洋出版社, 2013: 10−26.Compilation Committee of China Island Chronicles. China Island Chronicles. Shandong Volume, Volume 1, Northern Coast of Shandong Province[M]. Beijing: China Ocean Press, 2013: 10−26. [31] 邹建宇, 薛莹, 纪毓鹏, 等. 长山列岛邻近海域鱼类群落种类组成和多样性时空变化[J]. 应用生态学报. 2022, 33(8): 2237−2243.Zou Jianyu, Xue Ying, Ji Yupeng, et al. Spatio-temporal changes in species composition and diversity of fish communities in the adjacent waters of Changshan Islands, China[J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2237−2243. [32] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.6−2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2007.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 12763.6−2007, Specifications for oceanographic survey Part 6: Marine biological survey[S]. Beijing: Standards Press of China, 2007. [33] FishBase. World Wide Web electronic publication[EB/OL]. (2022−03−01)[2022−03−15]. https://www.fishbase.de/search.php. [34] 成庆泰, 周才武. 山东鱼类志[M]. 济南: 山东科学技术出版社, 1997.Cheng Qingtai, Zhou Caiwu. The Fishes of Shandong Province[M]. Ji’nan: Shandong Science and Technology Press, 1997. [35] 李明德, 张洪杰. 渤海鱼类生物学[M]. 北京: 中国科学技术出版社, 1991.Li Mingde, Zhang Hongjie. Fish Biology in Bohai Sea[M]. Beijing: China Science and Technology Press, 1991. [36] Lavorel S, Grigulis K, McIntyre S, et al. Assessing functional diversity in the field-methodology matters[J]. Functional Ecology, 2008, 22(1): 134−147. [37] 张金屯. 数量生态学[M]. 北京: 科学出版社, 2004.Zhang Jintun. Quantitative Ecology[M]. Beijing: Science Press, 2004. [38] Mouillot D, Dumay O, Tomasini J A. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities[J]. Estuarine, Coastal and Shelf Science, 2007, 71(3/4): 443−456. [39] Mouillot D, Graham N A J, Villéger S, et al. A functional approach reveals community responses to disturbances[J]. Trends in Ecology & Evolution, 2013, 28(3): 167−177. [40] 薛莹, 徐宾铎, 高天翔, 等. 北黄海秋季黄鮟鱇摄食习性的初步研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(9): 39−44.Xue Ying, Xu Binduo, Gao Tianxiang, et al. Preliminary study on the feeding habit of Lophius litulon during autumn in the North Yellow Sea[J]. Periodical of Ocean University of China (Natural Sciences Edition), 2010, 40(9): 39−44. [41] 陈俅, 王有君, 李培君, 等. 黄渤海区日本鲐的洄游与分布[J]. 水产科学, 1983(1): 6−13.Chen Qiu, Wang Youjun, Li Peijun, et al. Migration and distribution of Scomber japonicus in the Yellow Sea and Bohai Sea[J]. Fisheries Science, 1983(1): 6−13. [42] Musick J A. Criteria to define extinction risk in marine fishes: the American Fisheries Society initiative[J]. Fisheries, 1999, 24(12): 6−14. doi: 10.1577/1548-8446(1999)024<0006:CTDERI>2.0.CO;2 [43] 詹秉义. 渔业资源评估[M]. 北京: 中国农业出版社, 1995.Zhan Bingyi. Fisheries Stock Assessment[M]. Beijing: China Agriculture Press, 1995. [44] Mason N W H, Mouillot D, Lee W G, et al. Functional richness, functional evenness and functional divergence: the primary components of functional diversity[J]. Oikos, 2005, 111(1): 112−118. doi: 10.1111/j.0030-1299.2005.13886.x [45] Webb C O, Ackerly D D, McPeek M A, et al. Phylogenies and community ecology[J]. Annual Review of Ecology and Systematics, 2002, 33(1): 475−505. doi: 10.1146/annurev.ecolsys.33.010802.150448 [46] Barrio I C, Hik D S, Bueno C G, et al. Extending the stress-gradient hypothesis-is competition among animals less common in harsh environments[J]. Oikos, 2013, 122(4): 516−523. doi: 10.1111/j.1600-0706.2012.00355.x [47] Rudolf V H W, Rasmussen N L. Population structure determines functional differences among species and ecosystem processes[J]. Nature Communications, 2013, 4(1): 2318. doi: 10.1038/ncomms3318