留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温盐深变化对波束脚印坐标的影响规律分析

孙涛 何林帮

孙涛,何林帮. 温盐深变化对波束脚印坐标的影响规律分析[J]. 海洋学报,2023,45(2):130–138 doi: 10.12284/hyxb2023007
引用本文: 孙涛,何林帮. 温盐深变化对波束脚印坐标的影响规律分析[J]. 海洋学报,2023,45(2):130–138 doi: 10.12284/hyxb2023007
Sun Tao,He Linbang. Analysis of the influence of temperature, salinity and depth variations on beam footprint coordinates[J]. Haiyang Xuebao,2023, 45(2):130–138 doi: 10.12284/hyxb2023007
Citation: Sun Tao,He Linbang. Analysis of the influence of temperature, salinity and depth variations on beam footprint coordinates[J]. Haiyang Xuebao,2023, 45(2):130–138 doi: 10.12284/hyxb2023007

温盐深变化对波束脚印坐标的影响规律分析

doi: 10.12284/hyxb2023007
基金项目: 上海市重点研发计划项目(20DZ1206504)
详细信息
    作者简介:

    孙涛(1984-),男,四川省巴中市人,高级工程师,主要研究方向为水下地形测绘。E-mail: 187298857@qq.com

    通讯作者:

    何林帮,男,助理研究员,主要研究方向为多波束测深、水下自主导航。E-mail: helb@idsse.ac.cn

  • 中图分类号: P229

Analysis of the influence of temperature, salinity and depth variations on beam footprint coordinates

  • 摘要: 在多波束测深中,温盐深剖面数据的准确性对测量精度起到非常重要的作用,而在实际测量中,温盐深误差又不可避免地存在。为了分析温盐深变化对波束脚印坐标的影响规律并将其影响值量化,本文在声速剖面间接测量数据的基础上,选择精度较高、适应性较强的声速经验公式推导其误差公式,计算温盐深变化所引起的声速误差值,并且在常梯度声线跟踪模型的基础上推导出声波旅行轨迹的水平位移和垂直位移误差公式,然后结合声速剖面计算出声速误差对波束脚印坐标的影响程度。实验结果表明,温度变化对声速的影响最大,盐度和深度依序次之;温度、盐度、深度3个参量的变化引起波束脚印Z坐标的变化量均大于XY坐标,最高可达变化前深度的0.6%。温度和盐度的变化引起的三轴坐标值变化量随入射角的增大而减小,而深度变化引起的三轴坐标值变化量几乎不随入射角的变化而变化。本文研究结果可为温盐深误差对多波束测深精度评估工作提供借鉴作用。
  • 图  1  常梯度声线跟踪示意图

    Fig.  1  Schematic diagram of constant-gradient sound ray tracking

    图  2  CTD采集的4个站点位置

    Fig.  2  The four locations for CTD sampling

    图  3  两种声速经验公式计算的4个站点的声速剖面

    Fig.  3  The sound velocity profiles of four stations calculated by two empirical sound velocity formulas

    图  4  温度变化1℃后两种声速经验公式计算同一站点的声速差值

    Fig.  4  The sound velocity difference after the 1℃ change of temperature calculated by two empirical sound velocity formulas at the same station

    图  5  盐度变化1后两种声速经验公式计算同一站点的声速差值

    Fig.  5  The sound velocity difference after the 1 change of salinity calculated by two empirical sound velocity formulas at the same station

    图  6  深度变化10 m后两种声速经验公式计算同一站点的声速差值

    Fig.  6  The sound velocity difference after the 10 m change of depth calculated by two empirical sound velocity formulas at the same station

    图  7  温度变化1°C后引起的坐标值变化量

    Fig.  7  The coordinate value change caused by the 1 °C change of temperature

    图  8  盐度变化1后引起的坐标值变化量

    Fig.  8  The coordinate value change caused by the 1 change of salinity

    图  9  深度变化10 m后引起的坐标值变化量

    Fig.  9  The coordinate value change caused by the 10 m change of depth

    图  10  温盐深变化引起的各个入射角波束坐标变化均值

    Fig.  10  The mean value of beam coordinate variation of each incident angle caused by the variation of temperature, salinity and depth

    表  1  4个站点2种声速经验公式计算的声速变化均值

    Tab.  1  The mean value of sound velocity variation calculated by two empirical sound velocity formulas at four stations

    参量变化值Wilson公式计算值/(m·s–1DelGrosso公式计算值/(m·s–1
    温度变化1℃2.5822.572
    盐度变化11.4081.102
    深度变化10 m0.1600.162
    下载: 导出CSV
  • [1] 肖付民, 黄毅, 张永厚, 等. 表层声速误差对多波束测深数据的影响分析[J]. 海洋测绘, 2021, 41(1): 27−30. doi: 10.3969/j.issn.1671-3044.2021.01.006

    Xiao Fumin, Huang Yi, Zhang Yonghou, et al. Analysis of surface sound speed errors on multibeam sounding data[J]. Hydrographic Surveying and Charting, 2021, 41(1): 27−30. doi: 10.3969/j.issn.1671-3044.2021.01.006
    [2] 朱庆, 李德仁. 多波束测深数据的误差分析与处理[J]. 武汉测绘科技大学学报, 1998, 23(1): 1−4, 46.

    Zhu Qing, Li Deren. Error analysis and processing of multibeam soundings[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1998, 23(1): 1−4, 46.
    [3] 朱小辰, 刘雁春, 肖付民, 等. 海道测量多波束声速改正精确模型研究[J]. 海洋测绘, 2011, 31(1): 1−3, 8. doi: 10.3969/j.issn.1671-3044.2011.01.001

    Zhu Xiaochen, Liu Yanchun, Xiao Fumin, et al. Rigorous model of multibeam echosounding system sounding velocity correction[J]. Hydrographic Surveying and Charting, 2011, 31(1): 1−3, 8. doi: 10.3969/j.issn.1671-3044.2011.01.001
    [4] 张志伟, 暴景阳, 肖付民, 等. 利用模拟退火算法反演多波束测量声速剖面[J]. 武汉大学学报·信息科学版, 2018, 43(8): 1234−1241. doi: 10.13203/j.whugis20160304

    Zhang Zhiwei, Bao Jingyang, Xiao Fumin, et al. Inversion of sound velocity profile in multibeam survey based on simulated annealing algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1234−1241. doi: 10.13203/j.whugis20160304
    [5] 杨永红, 王翠杰. 基于压强和深度的两种不同声速计算方法比较[J]. 海洋测绘, 2015, 35(3): 64−66.

    Yang Yonghong, Wang Cuijie. Comparison of two methods for calculating ocean sound speed profiles based on pressure and depth[J]. Hydrographic Surveying and Charting, 2015, 35(3): 64−66.
    [6] 吴碧, 陈长安, 林龙. 声速经验公式的适用范围分析[J]. 声学技术, 2014, 33(6): 504−507.

    Wu Bi, Chen Chang’an, Lin Long. Analysis of applicable scope of empirical equation for sound velocity[J]. Technical Acoustics, 2014, 33(6): 504−507.
    [7] 张启国, 陈献, 刘强. 远海多波束水深测量中声速剖面获取方法研究[J]. 海洋测绘, 2019, 39(5): 1−4. doi: 10.3969/j.issn.1671-3044.2019.05.001

    Zhang Qiguo, Chen Xian, Liu Qiang. Research on the method of the sound speed profile acquisition in deep sea multi-beam sounding[J]. Hydrographic Surveying and Charting, 2019, 39(5): 1−4. doi: 10.3969/j.issn.1671-3044.2019.05.001
    [8] 朱小辰, 肖付民, 刘雁春, 等. 表层声速对多波束测深影响的研究[J]. 海洋测绘, 2007, 27(2): 23−25, 29. doi: 10.3969/j.issn.1671-3044.2007.02.006

    Zhu Xiaochen, Xiao Fumin, Liu Yanchun, et al. Research on the influence of surface sound velocity in multibeam echo sounding[J]. Hydrographic Surveying and Charting, 2007, 27(2): 23−25, 29. doi: 10.3969/j.issn.1671-3044.2007.02.006
    [9] 刘胜旋. 关于表层声速对多波束测深影响及改正的探讨[J]. 海洋测绘, 2009, 29(6): 26−29. doi: 10.3969/j.issn.1671-3044.2009.06.007

    Liu Shengxuan. The correction and effect of surface sound velocity on the multibeam echosounding[J]. Hydrographic Surveying and Charting, 2009, 29(6): 26−29. doi: 10.3969/j.issn.1671-3044.2009.06.007
    [10] Meinen C S, Watts D R. Further evidence that the sound-speed algorithm of Del Grosso is more accurate than that of Chen and Millero[J]. The Journal of the Acoustical Society of America, 1997, 102(4): 2058−2062. doi: 10.1121/1.419655
    [11] Del Grosso V A. New equation for the speed of sound in natural waters (with comparisons to other equations)[J]. The Journal of the Acoustical Society of America, 1974, 56(4): 1084−1091. doi: 10.1121/1.1903388
    [12] Wilson W D. Speed of sound in sea water as a function of temperature, pressure, and salinity[J]. The Journal of the Acoustical Society of America, 1960, 32(6): 641−644. doi: 10.1121/1.1908167
    [13] 刘伯胜, 雷家煜. 水声学原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 1993: 23.

    Liu Bosheng, Lei Jiayu. Principles of Underwater Acoustics[M]. Harbin: Harbin Engineering University Press, 1993: 23.
    [14] Barnard T E. Geometrically derived ray-theory results and direct verification of the pekeris solution for unbounded constant-gradient media[J]. IEEE Journal of Oceanic Engineering, 2012, 37(2): 244−254. doi: 10.1109/JOE.2012.2188161
    [15] Ogasawara H, Mori K, Nakamura T. Reciprocal sound propagation experiment in very shallow water area of hashirimizu port[J]. Japanese Journal of Applied Physics, 2010, 49(7S): 07HG15.
    [16] Ramezani H, Jamali-Rad H, Leus G. Target localization and tracking for an isogradient sound speed profile[J]. IEEE Transactions on Signal Processing, 2013, 61(6): 1434−1446. doi: 10.1109/TSP.2012.2235432
    [17] 赵建虎, 刘经南. 多波束测深及图像数据处理[M]. 武汉: 武汉大学出版社, 2008: 125-127.

    Zhao Jianhu, Liu Jingnan. Multibeam Bathymetry and Image Data Process[M]. Wuhan: Wuhan University Press, 2008: 125−127.
    [18] 何林帮, 赵建虎, 张红梅, 等. 顾及姿态角的多波束声线精确跟踪方法[J]. 哈尔滨工程大学学报, 2015, 36(1): 46−50. doi: 10.3969/j.issn.1006-7043.201312038

    He Linbang, Zhao Jianhu, Zhang Hongmei, et al. A precise multibeam sound ray tracking method taking into account the attitude angle[J]. Journal of Harbin Engineering University, 2015, 36(1): 46−50. doi: 10.3969/j.issn.1006-7043.201312038
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  165
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-07-29
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回