留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合重力异常和重力垂直梯度异常数据反演皇帝山海域海底地形

阳凡林 沈瑞杰 梅赛 屠泽杰 辛明真

阳凡林,沈瑞杰,梅赛,等. 联合重力异常和重力垂直梯度异常数据反演皇帝山海域海底地形[J]. 海洋学报,2022,44(12):126–135 doi: 10.12284/hyxb2022145
引用本文: 阳凡林,沈瑞杰,梅赛,等. 联合重力异常和重力垂直梯度异常数据反演皇帝山海域海底地形[J]. 海洋学报,2022,44(12):126–135 doi: 10.12284/hyxb2022145
Yang Fanlin,Shen Ruijie,Mei Sai, et al. Inversion of seafloor topography in Emperor Seamount sea area by combined gravity anomalies and vertical gravity gradient anomalies data[J]. Haiyang Xuebao,2022, 44(12):126–135 doi: 10.12284/hyxb2022145
Citation: Yang Fanlin,Shen Ruijie,Mei Sai, et al. Inversion of seafloor topography in Emperor Seamount sea area by combined gravity anomalies and vertical gravity gradient anomalies data[J]. Haiyang Xuebao,2022, 44(12):126–135 doi: 10.12284/hyxb2022145

联合重力异常和重力垂直梯度异常数据反演皇帝山海域海底地形

doi: 10.12284/hyxb2022145
基金项目: 国家自然科学基金重点项目(41930535);高端外国专家引进计划(G2021025006L);山东省研究生教育创新计划建设项目(SDYJG19083)
详细信息
    作者简介:

    阳凡林(1974-),男,湖北省荆州市人,教授,主要从事海底地形测量和海洋定位导航方面的研究工作。E-mail:flyang@sdust.edu.cn

    通讯作者:

    梅赛(1985-),男,副研究员,从事海洋地质调查与研究工作。E-mail:meisai2000@163.com

  • 中图分类号: P229.1;P714.7

Inversion of seafloor topography in Emperor Seamount sea area by combined gravity anomalies and vertical gravity gradient anomalies data

  • 摘要: 海底地形对开展海洋科学调查和研究十分重要。以多波束为主的回声测深技术测量成本高且效率低,几十年来仅实现了全球约20%的海床测绘。对于空白区(特别是深海区域),可以借助重力异常和重力垂直梯度异常进行回归分析反演得到,但该方法得到的比例因子鲁棒性不强。为了解决这一问题,同时考虑到两种重力数据在表征海底地形长短波长的不同优势,本文结合滑动窗口赋权和稳健回归分析来反演海底地形。在太平洋皇帝山海域(35°~45°N,165°~175°E)的实验结果表明:在船测检核点处,本文构建模型的标准差为61.02 m,相比于单一重力数据反演模型,精度分别提高了14.92%(重力异常)和2.08%(重力垂直梯度异常),能较好地反映皇帝海山链的地形走势。
  • 图  1  研究区域与船载测深轨迹分布

    Fig.  1  Study area and shipborne bathymetry trace distribution map

    图  2  重力模型示意图

    Fig.  2  Gravimetric model diagram

    图  3  重力数据与海底地形的相干性

    Fig.  3  Coherence between gravimetric data and seafloor topography

    图  4  反演波段重力数据与残余海深线性拟合结果

    Fig.  4  Results of linear fitting between gravity data of inversion band and residual sea depth

    图  5  重力垂直梯度异常模型权值xi分配示意图,相应的,重力异常模型的权值分配为1−xi

    Fig.  5  The schematic diagram of weight distribution xi of vertical gravity gradient anomalies model. Accordingly, the weight distribution of gravity anomalies model is 1−xi

    图  6  海底地形反演流程

    Fig.  6  Flowchart of seafloor topography inversion

    图  7  MGM海底地形模型

    Fig.  7  The seafloor topography model of multiple gravity model

    图  8  MGM差值分布图

    Fig.  8  Difference distribution diagram of multiple gravity model

    图  9  检核点处差值结果统计直方图

    Fig.  9  Statistical histogram of the difference results at the check point

    图  10  异常点空间位置分布图(黑色圆点代表异常点位)

    Fig.  10  Spatial distribution map of outliers (black dots represent outliers)

    图  11  皇帝海山链地形剖面图

    Fig.  11  The topographic profile of the Emperor Seamount Chain

    表  1  海底地形模型与多波束数据差值统计结果

    Tab.  1  Difference statistics of seafloor topographic model with multibeam data

    模型平均值/m标准差/m相关系数
    SGA166.54462.980.948 3
    SVG128.76402.270.956 1
    MGM_LS159.01421.550.949 7
    MGM139.09393.890.961 1
    下载: 导出CSV

    表  2  海底地形模型在检核点处差值统计结果

    Tab.  2  Difference statistics of seafloor topographic model at check point

    模型最大值/m最小值/m平均值/m标准差/m相关系数
    MGM942.65–895.090.6461.020.998 0
    DTU181 560.311 110.947.7495.410.996 6
    V23.11 697.412 148.3310.4695.520.996 6
    下载: 导出CSV
  • [1] Weatherall P, Marks K M, Jakobsson M, et al. A new digital bathymetric model of the world’s oceans[J]. Earth and Space Science, 2015, 2(8): 331−345. doi: 10.1002/2015EA000107
    [2] 欧阳明达, 孙中苗, 翟振和. 基于重力地质法的南中国海海底地形反演[J]. 地球物理学报, 2014, 57(9): 2756−2765. doi: 10.6038/cjg20140903

    Ouyang Mingda, Sun Zhongmiao, Zhai Zhenhe. Predicting bathymetry in South China Sea using the gravity-geologic method[J]. Chinese Journal of Geophysics, 2014, 57(9): 2756−2765. doi: 10.6038/cjg20140903
    [3] 胡敏章, 李建成, 金涛勇. 应用重力地质方法反演皇帝海山的海底地形[J]. 武汉大学学报·信息科学版, 2012, 37(5): 610−612, 629. doi: 10.13203/j.whugis2012.05.008

    Hu Minzhang, Li Jiancheng, Jin Taoyong. Bathymetry inversion with gravity-geologic method in emperor seamount[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 610−612, 629. doi: 10.13203/j.whugis2012.05.008
    [4] Fan Diao, Li Shanshan, Meng Shuyu, et al. Bathymetric prediction from multi-source satellite altimetry gravity data[J]. Journal of Geodesy and Geoinformation Science, 2020, 2(1): 49−58.
    [5] Hwang C. A bathymetric model for the South China Sea from satellite altimetry and depth data[J]. Marine Geodesy, 1999, 22(1): 37−51. doi: 10.1080/014904199273597
    [6] Calmant S, Berge-Nguyen M, Cazenave A. Global seafloor topography from a least-squares inversion of altimetry-based high-resolution mean sea surface and shipboard soundings[J]. Geophysical Journal International, 2002, 151(3): 795−808. doi: 10.1046/j.1365-246X.2002.01802.x
    [7] Smith W H F, Sandwell D T. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 21803−21824. doi: 10.1029/94JB00988
    [8] Kim K B, Hsiao Y S, Kim J W, et al. Bathymetry enhancement by altimetry-derived gravity anomalies in the East Sea (Sea of Japan)[J]. Marine Geophysical Researches, 2010, 31(4): 285−298. doi: 10.1007/s11001-010-9110-0
    [9] 李倩倩, 鲍李峰. 测高重力场反演海底地形方法比较[J]. 海洋测绘, 2016, 36(5): 1−4, 18. doi: 10.3969/j.issn.1671-3044.2016.05.001

    Li Qianqian, Bao Lifeng. Comparative analysis of methods for bathymetry prediction from altimeter-derived gravity anomalies[J]. Hydrographic Surveying and Charting, 2016, 36(5): 1−4, 18. doi: 10.3969/j.issn.1671-3044.2016.05.001
    [10] 彭聪, 周兴华, 王颖. 两种测高重力异常反演海底地形方法比较[J]. 海洋通报, 2020, 39(2): 223−230.

    Peng Cong, Zhou Xinghua, Wang Ying. Comparison of two methods for retrieving sea bottom terrain bathymetry prediction from altimetry gravity anomalies[J]. Marine Science Bulletin, 2020, 39(2): 223−230.
    [11] 范雕, 李姗姗, 孟书宇, 等. 不同均衡补偿模式下海底地形反演方法比较分析[J]. 中国惯性技术学报, 2019, 27(1): 51−59.

    Fan Diao, Li Shanshan, Meng Shuyu, et al. Comparison and analysis on seafloor topography inversion methods with different isostatic compensation models[J]. Journal of Chinese Inertial Technology, 2019, 27(1): 51−59.
    [12] 郭金运, 魏志杰, 祝程程, 等. 基于重力异常迭代延拓的南海海底地形反演[J]. 山东科技大学学报(自然科学版), 2021, 40(4): 1−10.

    Guo Jinyun, Wei Zhijie, Zhu Chengcheng, et al. Bathymetry inversion of South China Sea based on iterative continuation of gravity anomalies[J]. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40(4): 1−10.
    [13] 王虎彪, 肖耀飞, 武凛, 等. 重力数据融合与重力垂直梯度异常反演[J]. 海洋测绘, 2018, 38(1): 1−4, 17. doi: 10.3969/j.issn.1671-3044.2018.01.001

    Wang Hubiao, Xiao Yaofei, Wu Lin, et al. The fusion of gravity data and inversion of gravity vertical gradient anomaly[J]. Hydrographic Surveying and Charting, 2018, 38(1): 1−4, 17. doi: 10.3969/j.issn.1671-3044.2018.01.001
    [14] Wan Xiaoyun, Ran Jiangjun, Jin Shuanggen. Sensitivity analysis of gravity anomalies and vertical gravity gradient data for bathymetry inversion[J]. Marine Geophysical Research, 2019, 40(1): 87−96. doi: 10.1007/s11001-018-9361-8
    [15] Wang Yanming. Predicting bathymetry from the Earth’s gravity gradient anomalies[J]. Marine Geodesy, 2000, 23(4): 251−258. doi: 10.1080/01490410050210508
    [16] Wessel P, Lyons S. Distribution of large Pacific seamounts from Geosat/ERS-1: implications for the history of intraplate volcanism[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B10): 22459−22475. doi: 10.1029/97JB01588
    [17] 吴云孙, 晁定波, 李建成, 等. 利用测高重力梯度异常反演中国南海海底地形[J]. 武汉大学学报·信息科学版, 2009, 34(12): 1423−1425. doi: 10.13203/j.whugis2009.12.007

    Wu Yunsun, Chao Dingbo, Li Jiancheng, et al. Recovery of ocean depth model of South China Sea from altimetric gravity gradient anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423−1425. doi: 10.13203/j.whugis2009.12.007
    [18] 胡敏章, 李建成, 金涛勇, 等. 联合多源数据确定中国海及周边海底地形模型[J]. 武汉大学学报·信息科学版, 2015, 40(9): 1266−1273.

    Hu Minzhang, Li Jiancheng, Jin Taoyong, et al. Recovery of bathymetry over China Sea and its adjacent areas by combination of multi-source data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1266−1273.
    [19] 范雕, 李姗姗, 杨军军, 等. 利用多元回归分析反演西南印度洋区域海底地形[J]. 测绘学报, 2020, 49(2): 147−161. doi: 10.11947/j.AGCS.2020.20180526

    Fan Diao, Li Shanshan, Yang Junjun, et al. Predicting bathymetry by applying multiple regression analysis in the Southwest Indian Ocean region[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 147−161. doi: 10.11947/j.AGCS.2020.20180526
    [20] Parker R L. The rapid calculation of potential anomalies[J]. Geophysical Journal International, 1973, 31(4): 447−455. doi: 10.1111/j.1365-246X.1973.tb06513.x
    [21] Schwarz K P, Sideris M G, Forsberg R. The use of FFT techniques in physical geodesy[J]. Geophysical Journal International, 1990, 100(3): 485−514. doi: 10.1111/j.1365-246X.1990.tb00701.x
    [22] 欧阳明达, 孙中苗, 翟振和, 等. 采用重力异常的导纳理论推估海底地形[J]. 测绘学报, 2015, 44(10): 1092−1099. doi: 10.11947/j.AGCS.2015.20140427

    Ouyang Mingda, Sun Zhongmiao, Zhai Zhenhe, et al. Bathymetry prediction based on the admittance theory of gravity anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1092−1099. doi: 10.11947/j.AGCS.2015.20140427
    [23] 韩小慧. 稳健多元线性回归在地理数据处理中的应用[D]. 太原: 太原理工大学, 2012.

    Han Xiaohui. Application of robust multiple linear regression in geographic data processing[D]. Taiyuan: Taiyuan University of Technology, 2012.
    [24] Baselga S. Global optimization solution of robust estimation[J]. Journal of Surveying Engineering, 2007, 133(3): 123−128. doi: 10.1061/(ASCE)0733-9453(2007)133:3(123)
    [25] 陈艳国. 回归预测模型的稳健性分析[J]. 西部探矿工程, 2006, 18(2): 177−179. doi: 10.3969/j.issn.1004-5716.2006.02.083

    Chen Yanguo. Robustness analysis of regression prediction models[J]. West-China Exploration Engineering, 2006, 18(2): 177−179. doi: 10.3969/j.issn.1004-5716.2006.02.083
    [26] 范雕, 李姗姗, 孟书宇, 等. 应用抗差估计方法构建日本海海底地形模型[J]. 中国惯性技术学报, 2020, 28(5): 576−585.

    Fan Diao, Li Shanshan, Meng Shuyu, et al. Applying robust estimation method to estimate seafloor topography in the Sea of Japan[J]. Journal of Chinese Inertial Technology, 2020, 28(5): 576−585.
    [27] 魏志杰. 基于卫星测高数据反演南海海底地形[D]. 青岛: 山东科技大学, 2021.

    Wei Zhijie. Bathymetry prediction of the South China Sea based on satellite altimetry data[D]. Qingdao: Shandong University of Science and Technology, 2021.
    [28] 范雕, 李姗姗, 孟书宇, 等. 线性回归分析技术推估海底地形[J]. 中国惯性技术学报, 2018, 26(1): 24−32.

    Fan Diao, Li Shanshan, Meng Shuyu, et al. Predicting submarine topography by linear regression analysis[J]. Journal of Chinese Inertial Technology, 2018, 26(1): 24−32.
    [29] 王永康, 周兴华, 唐秋华, 等. 应用重力地质法反演马里亚纳海沟地形[J]. 海洋科学进展, 2020, 38(4): 708−716. doi: 10.3969/j.issn.1671-6647.2020.04.014

    Wang Yongkang, Zhou Xinghua, Tang Qiuhua, et al. Predicting bathymetry in Mariana Trench using gravity-geologic method[J]. Advances in Marine Science, 2020, 38(4): 708−716. doi: 10.3969/j.issn.1671-6647.2020.04.014
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  209
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-06-07
  • 网络出版日期:  2022-08-26
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回