留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湛江湾真光层深度与初级生产力的时空变化及其影响因素

余果 钟雅枫 付东洋 陈法锦 刘大召 徐华兵 刘贝

余果,钟雅枫,付东洋,等. 湛江湾真光层深度与初级生产力的时空变化及其影响因素[J]. 海洋学报,2022,44(8):31–41 doi: 10.12284/hyxb2022136
引用本文: 余果,钟雅枫,付东洋,等. 湛江湾真光层深度与初级生产力的时空变化及其影响因素[J]. 海洋学报,2022,44(8):31–41 doi: 10.12284/hyxb2022136
Yu Guo,Zhong Yafeng,Fu Dongyang, et al. Spatiotemporal variations and influencing factors of euphotic depth and primary productivity in the Zhanjiang Bay[J]. Haiyang Xuebao,2022, 44(8):31–41 doi: 10.12284/hyxb2022136
Citation: Yu Guo,Zhong Yafeng,Fu Dongyang, et al. Spatiotemporal variations and influencing factors of euphotic depth and primary productivity in the Zhanjiang Bay[J]. Haiyang Xuebao,2022, 44(8):31–41 doi: 10.12284/hyxb2022136

湛江湾真光层深度与初级生产力的时空变化及其影响因素

doi: 10.12284/hyxb2022136
基金项目: 国家自然科学基金青年科学基金(42106148);广东省教育厅重点研究项目(2019KZDXM019);广东省教育厅青年创新人才项目(2021KQNCX028);南方海洋科学与工程广东省实验室(湛江)资助项目(ZJW-2019-08)。
详细信息
    作者简介:

    余果(1993-),男,安徽省安庆市人,研究方向为海洋水色遥感。E-mail:yg100@gdou.edu.cn

    通讯作者:

    钟雅枫,博士研究生,主要从事海洋生态环境研究。E-mail:780273465@qq.com

    徐华兵,讲师,博士,研究方向为环境科学。E-mail:xuhuabing1990@163.com

  • 中图分类号: P714+.4;P76

Spatiotemporal variations and influencing factors of euphotic depth and primary productivity in the Zhanjiang Bay

  • 摘要: 基于2016−2017年4个季节航次数据,分析了湛江湾真光层深度与初级生产力的时空变化特征及其影响因素。结果表明,湛江湾真光层深度平均值为(6.95±3.17)m,空间变化比季节变化明显,Kd(PAR)与浊度存在显著的正相关关系,建立的线性回归模型R2为0.73(p<0.01),表明悬浮颗粒物对湛江湾真光层深度的影响占主导地位。利用VGPM模型得到初级生产力(以碳计)的平均值为(639.53±427.95)mg/(m2·d),其时空特征与真光层深度基本保持一致,真光层深度比叶绿素a浓度更能解释初级生产力的时空分布模式。
  • 图  1  湛江湾采样站位

    ◇(Z1−Z24)为春季和夏季采样站位;▽(S1−S21)为秋季采样站位;△(A1−A26)为冬季采样站位

    Fig.  1  Sampling sites in the Zhanjiang Bay

    ◇(Z1−Z24) denotes the sampling site in spring and summer; ▽(S1−S21) denotes the sampling site in autumn; △(A1−A26) denotes the sampling site in winter

    图  2  湛江湾真光层深度的季节和空间分布

    Fig.  2  Seasonal and spatial distributions of euphotic depth in the Zhanjiang Bay

    图  3  基于VGPM模型的湛江湾初级生产力的季节和空间分布

    Fig.  3  Seasonal and spatial distributions of primary productivity in the Zhanjiang Bay based on VGPM model

    图  4  PAR漫衰减系数(Kd)与浊度(a)、叶绿素a浓度(b)和CDOM吸收系数(c)建立的回归模型

    Kd(PAR)单位:m−1;浊度单位:NTU;叶绿素a浓度单位:μg/L;CDOM吸收系数单位:m−1

    Fig.  4  Regression models between photosynthetically available radiation attenuation coefficients (Kd (PAR)) and turbidity (a), Chl a concentration (b) and CDOM absorption coefficient (c)

    Kd(PAR) unit: m−1; turbidity unit: NTU; Chl a concentration unit: μg/L; CDOM absorption coefficient unit: m−1

    图  5  湛江湾表层叶绿素a浓度的季节和空间分布

    Fig.  5  Seasonal and spatial distributions of surface Chl a concentration in the Zhanjiang Bay

    图  6  4个季节各有效站位表层营养盐浓度

    Fig.  6  Surface nutrient concentration of each effective station in four seasons

    图  7  4个季节各有效站位N、P、Si含量之间的比值

    Fig.  7  Ratio of N, P and Si contents at each effective station in four seasons

    表  1  湛江湾Kd(PAR) 和Zeu的季节性变化

    Tab.  1  Seasonal variations of Kd(PAR) and Zeu in the Zhanjiang Bay

    调查期间(n=62)Kd(PAR)/m−1Zeu/m
    春季(n=19)平均值0.79±0.447.05±3.27
    范围0.24~2.182.11~16.00
    夏季(n=13)平均值0.91±0.275.23±1.98
    范围0.49~1.483~9.32
    秋季(n=11)平均值0.91±0.335.50±1.67
    范围0.50~1.742.65~9.13
    冬季(n=19)平均值0.53±0.228.62±3.74
    范围0.29~1.062.8~15.5
    总计平均值0.76±0.366.95±3.17
    范围0.24~2.182.11~16.00
    下载: 导出CSV

    表  2  初级生产力与不同季节真光层深度、叶绿素a浓度之间的相关系数(样本数=62)

    Tab.  2  Value of correlation coefficient between primary productivity and euphotic depth and Chl a concentration during different seasons (sample number=62)

    参数春季夏季秋季冬季全年
    Zeu0.917**0.726**0.944**0.968**0.903**
    Chl a浓度0.854**0.8**0.779**0.150.519**
    注:**代表p<0.01。
    下载: 导出CSV

    表  3  初级生产力与不同季节可溶性无机氮(DIN)、$ {{\bf {PO}}_{\bf{4}}^{{\bf{3-}}}} $$ {{\bf {SiO}}_{\bf{3}}^{{\bf{2-}}}} $浓度之间的相关系数(样本数=60)

    Tab.  3  Value of correlation coefficient between primary productivity and DIN, $ {{\bf {PO}}_{\bf{4}}^{{\bf{3-}}}} $ and $ {{\bf {SiO}}_{\bf{3}}^{{\bf{2-}}}} $ concentrations during different seasons (sample number=60)

    参数春季夏季秋季冬季全年
    DIN浓度0.841**0.836**0.905**0.4190.668**
    $ {{\rm {PO}}_4^{3-}} $浓度0.721**0.727**0.515 0.18 0.226
    $ {{\rm {SiO}}_3^{2-}} $浓度0.847**0.758**0.751**0.2120.553**
    注:**代表p<0.01。
    下载: 导出CSV
  • [1] Wang Shengqiang, Lü Jun, Nie Junwei, et al. Dynamics of euphotic zone depth in the Bohai Sea and Yellow Sea[J]. Science of the Total Environment, 2021, 751: 142270. doi: 10.1016/j.scitotenv.2020.142270
    [2] Häder D P, Williamson C E, Wängberg S Å, et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors[J]. Photochemical & Photobiological Sciences, 2015, 14(1): 108−126.
    [3] Kirk J T O. Light and Photosynthesis in Aquatic Ecosystems[M]. Cambridge: Cambridge University Press, 1994.
    [4] 周远洋. 程海真光层深度与浮游植物初级生产力的时空特征解析[D]. 昆明: 云南大学, 2017.

    Zhou Yuanyang. Analysis on the temporal-spatial characteristics of euphotic depth and primary production of phytoplankton in lake Chenghai[D]. Kunming: Yunnan University, 2017.
    [5] DeVries T, Weber T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations[J]. Global Biogeochemical Cycles, 2017, 31(3): 535−555. doi: 10.1002/2016GB005551
    [6] Chang G C, Dickey T D. Coastal ocean optical influences on solar transmission and radiant heating rate[J]. Journal of Geophysical Research: Oceans, 2004, 109(C1): C01020.
    [7] Luhtala H, Tolvanen H, Kalliola R. Annual spatio-temporal variation of the euphotic depth in the SW-Finnish archipelago, Baltic Sea[J]. Oceanologia, 2013, 55(2): 359−373. doi: 10.5697/oc.55-2.359
    [8] Smale D A, Pessarrodona A, King N, et al. Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the Northeast Atlantic[J]. Scientific Reports, 2020, 10(1): 12161. doi: 10.1038/s41598-020-69238-x
    [9] Lalli C M, Parsons T R. Biological Oceanography: An Introduction[M]. 2nd ed. Amsterdam: Elsevier, 1997.
    [10] Yoshikawa T, Tomizawa K, Okamoto Y, et al. Nutrients, light and phytoplankton production in the shallow, tropical coastal waters of Bandon Bay, southern Thailand[J]. Marine Ecology, 2017, 38(6): e12475. doi: 10.1111/maec.12475
    [11] Ogbuagu D H, Nwahiri U O, Osuebi E C, et al. Investigating temperature and nutrients as drivers of primary productivity in aquatic environment[J]. Journal of Geoscience and Environment Protection, 2019, 7(7): 92−107. doi: 10.4236/gep.2019.77008
    [12] Zhou Qichao, Zhang Yunlin, Li Kaidi, et al. Seasonal and spatial distributions of euphotic zone and long-term variations in water transparency in a clear oligotrophic Lake Fuxian, China[J]. Journal of Environmental Sciences, 2018, 72: 185−197. doi: 10.1016/j.jes.2018.01.005
    [13] Zhang Peng, Xu Jialei, Zhang Jibiao, et al. Spatiotemporal dissolved silicate variation, sources, and behavior in the eutrophic Zhanjiang Bay, China[J]. Water, 2020, 12(12): 3586. doi: 10.3390/w12123586
    [14] Zhang Jibiao, Zhang Yanchan, Zhang Peng, et al. Seasonal phosphorus variation in coastal water affected by the land-based sources input in the eutrophic Zhanjiang Bay, China[J]. Estuarine, Coastal and Shelf Science, 2021, 252: 107277. doi: 10.1016/j.ecss.2021.107277
    [15] Fu Dongyang, Zhong Yafeng, Chen Fajin, et al. Analysis of dissolved oxygen and nutrients in Zhanjiang Bay and the adjacent sea area in spring[J]. Sustainability, 2020, 12(3): 889. doi: 10.3390/su12030889
    [16] Zhang Jibiao, Zhou Fengxia, Chen Chunliang, et al. Spatial distribution and correlation characteristics of heavy metals in the seawater, suspended particulate matter and sediments in Zhanjiang Bay, China[J]. PLoS ONE, 2018, 13(8): e0201414. doi: 10.1371/journal.pone.0201414
    [17] Li Jiacheng, Chen Fajin, Zhang Shuwen, et al. Origin of the particulate organic matter in a monsoon-controlled bay in southern China[J]. Journal of Marine Science and Engineering, 2021, 9(5): 541. doi: 10.3390/jmse9050541
    [18] Li Jiacheng, Cao Ruixue, Lao Qibin, et al. Assessing seasonal nitrate contamination by nitrate dual isotopes in a monsoon-controlled bay with intensive human activities in South China[J]. International Journal of Environmental Research and Public Health, 2020, 17(6): 1921. doi: 10.3390/ijerph17061921
    [19] Wang Shuangling, Zhou Fengxia, Chen Fajin, et al. Spatiotemporal distribution characteristics of nutrients in the drowned tidal inlet under the influence of tides: a case study of Zhanjiang Bay, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(4): 2089. doi: 10.3390/ijerph18042089
    [20] 国家海洋局908专项办公室. 海洋光学调查技术规程[M]. 北京: 海洋出版社, 2006.

    Special Office of the State Oceanic Administration. Marine Optical Investigation Procedures[M]. Beijing: China Ocean Press, 2006.
    [21] Shang Yingxin, Song Kaishan, Wen Zhidan, et al. Characterization of CDOM absorption of reservoirs with its linkage of regions and ages across China[J]. Environmental Science and Pollution Research, 2018, 25(16): 16009−16023. doi: 10.1007/s11356-018-1832-6
    [22] 马建行. 东北地区典型湖库Kd(PAR)与真光层深度遥感反演[D]. 长春: 中国科学院东北地理与农业生态研究所, 2016.

    Ma Jianhang. Inversion of Kd(PAR) and euphotic zone depth of typical water bodys in Northeast China with remote imagery[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2016.
    [23] Huovinen P S, Penttilä H, Soimasuo M R. Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland[J]. Chemosphere, 2003, 51(3): 205−214. doi: 10.1016/S0045-6535(02)00634-3
    [24] Behrenfeld M J, Falkowski P G. A consumer’s guide to phytoplankton primary productivity models[J]. Limnology and Oceanography, 1997, 42(7): 1479−1491. doi: 10.4319/lo.1997.42.7.1479
    [25] 郝锵, 宁修仁, 刘诚刚, 等. 南海北部初级生产力遥感反演及其环境调控机制[J]. 海洋学报, 2007, 29(3): 58−68.

    Hao Qiang, Ning Xiuren, Liu Chenggang, et al. Satellite and in situ observations of primary production in the northern South China Sea[J]. Haiyang Xuebao, 2007, 29(3): 58−68.
    [26] Behrenfeld M J, Falkowski P G. Photosynthetic rates derived from satellite-based chlorophyll concentration[J]. Limnology and Oceanography, 1997, 42(1): 1−20. doi: 10.4319/lo.1997.42.1.0001
    [27] 高姗. 基于遥感的南海初级生产力时空变化特征与环境影响因素研究[D]. 北京: 中国气象科学研究院, 2008.

    Gao Shan. Spatial and temporal distribution of ocean primary productivity and its relation with oceanic environments in the South China Sea based on remote sensing[D]. Beijing: Chinese Academy of Meteorological Sciences, 2008.
    [28] Mayora G, Devercelli M. Spatio-temporal variability in underwater light climate in a turbid river-floodplain system: driving factors and estimation using Secchi disc[J]. River Research and Applications, 2019, 35(6): 566−576.
    [29] Zhou Hong, Fang Fang, Li Zhe, et al. Spatiotemporal variations in euphotic depth and their correlation with influencing factors in a tributary of the Three Gorges Reservoir[J]. Water and Environment Journal, 2014, 28(2): 233−241. doi: 10.1111/wej.12031
    [30] Quang N H, Sasaki J, Higa H, et al. Spatiotemporal variation of turbidity based on landsat 8 OLI in cam ranh bay and thuy trieu lagoon, vietnam[J]. Water, 2017, 9(8): 570. doi: 10.3390/w9080570
    [31] Briciu-Burghina C, Sullivan T, Chapman J, et al. Continuous high-frequency monitoring of estuarine water quality as a decision support tool: a Dublin Port case study[J]. Environmental Monitoring and Assessment, 2014, 186(9): 5561−5580. doi: 10.1007/s10661-014-3803-9
    [32] 余果, 廖珊, 付东洋, 等. 湛江港湾及邻近海域有色溶解有机物光谱吸收特性分析[J]. 广东海洋大学学报, 2017, 37(4): 123−127. doi: 10.3969/j.issn.1673-9159.2017.04.019

    Yu Guo, Liao Shan, Fu Dongyang, et al. Optical characteristics of colored dissolved organic matter in Zhanjiang Bay and its adjacent sea areas[J]. Journal of Guangdong Ocean University, 2017, 37(4): 123−127. doi: 10.3969/j.issn.1673-9159.2017.04.019
    [33] Dong L X, Guan W B, Chen Q, et al. Sediment transport in the Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 248−258. doi: 10.1016/j.ecss.2011.04.003
    [34] Ichikawa H, Beardsley R C. The current system in the Yellow and East China Seas[J]. Journal of Oceanography, 2002, 58(1): 77−92. doi: 10.1023/A:1015876701363
    [35] Tsai A Y, Gong G C, Chung C C, et al. Different impact of nanoflagellate grazing and viral lysis on Synechococcus spp. and picoeukaryotic mortality in coastal waters[J]. Estuarine, Coastal and Shelf Science, 2018, 209: 1−6. doi: 10.1016/j.ecss.2018.05.012
    [36] 张才学, 龚玉艳, 孙省利. 湛江港湾潜在赤潮生物的时空分布及其影响因素[J]. 生态学杂志, 2012, 31(7): 1763−1770.

    Zhang Caixue, Gong Yuyan, Sun Xingli. Spatiotemporal distribution and related affecting factors of red tide latent organisms in Zhanjiang Bay, Guangdong Province of South China[J]. Chinese Journal of Ecology, 2012, 31(7): 1763−1770.
    [37] Falkowski P G. Light-shade adaptation in marine phytoplankton[M]//Falkowski P G. Primary Productivity in the Sea. Boston: Springer, 1980.
    [38] Goldman J C. Book Review: marine photosynthesis (with special emphasis on the ecological aspects)[J]. Earth Science Reviews, 1977, 13(1): 79.
    [39] Justić D, Rabalais N N, Turner R E. Stoichiometric nutrient balance and origin of coastal eutrophication[J]. Marine Pollution Bulletin, 1995, 30(1): 41−46. doi: 10.1016/0025-326X(94)00105-I
    [40] Zhou Mingjiang, Shen Zhiliang, Yu Rencheng. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J]. Continental Shelf Research, 2008, 28(12): 1483−1489. doi: 10.1016/j.csr.2007.02.009
    [41] Zhou Yuping, Zhang Yanming, Li Fangfang, et al. Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea[J]. Science of the Total Environment, 2017, 574: 499−508. doi: 10.1016/j.scitotenv.2016.09.092
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  167
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-28
  • 修回日期:  2022-01-15
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2022-08-15

目录

    /

    返回文章
    返回