留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长棘海星暴发对珊瑚礁区沉积物营养盐动力学的影响研究

夏荣林 宁志铭 余克服 方草 黄学勇 韦芬

夏荣林,宁志铭,余克服,等. 长棘海星暴发对珊瑚礁区沉积物营养盐动力学的影响研究[J]. 海洋学报,2022,44(8):23–30 doi: 10.12284/hyxb2022128
引用本文: 夏荣林,宁志铭,余克服,等. 长棘海星暴发对珊瑚礁区沉积物营养盐动力学的影响研究[J]. 海洋学报,2022,44(8):23–30 doi: 10.12284/hyxb2022128
Xia Ronglin,Ning Zhiming,Yu Kefu, et al. Study on the impacts of crown-of-thorns starfish on nutrient dynamics in the coral reef sediments[J]. Haiyang Xuebao,2022, 44(8):23–30 doi: 10.12284/hyxb2022128
Citation: Xia Ronglin,Ning Zhiming,Yu Kefu, et al. Study on the impacts of crown-of-thorns starfish on nutrient dynamics in the coral reef sediments[J]. Haiyang Xuebao,2022, 44(8):23–30 doi: 10.12284/hyxb2022128

长棘海星暴发对珊瑚礁区沉积物营养盐动力学的影响研究

doi: 10.12284/hyxb2022128
基金项目: 三沙海洋生态环境项目;国家自然科学基金(42090041,42030502)。
详细信息
    作者简介:

    夏荣林(1999-),男,广西壮族自治区浦北县人,从事营养盐循环方面研究。E-mail:1670588549@qq.com

    通讯作者:

    宁志铭,男,博士,从事海洋生物地球化学方面研究。E-mail:zmning@gxu.edu.cn

  • 中图分类号: P734.4+4;P714+.5

Study on the impacts of crown-of-thorns starfish on nutrient dynamics in the coral reef sediments

  • 摘要: 长棘海星暴发对珊瑚礁生态系统产生了严重危害,而水体营养盐的补充可能是导致长棘海星暴发的一个关键因素。砂质沉积物对调控珊瑚礁区的营养盐浓度和结构起着关键作用,因此本研究通过流动式反应器对长棘海星和砂质沉积物进行模拟实验,分析长棘海星排泄活动及其死亡后有机体降解对水体营养盐的影响,并探究砂质沉积物的响应。实验结果表明:(1)长棘海星排泄的溶解无机氮(DIN)和溶解无机磷(DIP)通量分别为(83.55±4.74)μmol/(ind.·h)和(2.53±0.03)μmol/(ind.·h),这些营养盐可能给长棘海星的持续暴发提供营养条件;(2)砂质沉积物对长棘海星排泄导致的营养盐浓度升高具有缓冲作用,约70.7%的DIN和91.4%的DIP被截留在沉积物中,但沉积物界面营养盐交换导致的氮磷比升高可能不利于珊瑚生长;(3)长棘海星死后的有机体降解可促使沉积物–水界面释放营养盐,结合海星暴发密度估算,其释放的营养盐可导致上覆水中DIN和DIP浓度分别升高0.32 μmol/L和0.01 μmol/L,这可能会促使大型藻的快速生长而妨碍珊瑚的自我修复。
  • 图  1  流动式反应器培养装置示意图

    Fig.  1  Schematic diagram of flow-through reactor experiments

    图  2  海星排泄的营养盐通量和海星与沉积物串联时沉积物界面营养盐的交换通量以及培养装置流进和流出海水的DIN/DIP

    Fig.  2  The nutrient fluxes by starfish excretion and those at the sediment-seawater interface affecting by starfish and the DIN/DIP in the influent and effluent seawater

    图  3  沉积物界面营养盐通量在海星有机体降解影响下的时间变化趋势

    Fig.  3  The time variation of nutrient fluxes at the sediment–seawater interface under the influence of the degradation of starfish

  • [1] Muhando C A, Lanshammar F. Ecological effects of the crown-of-thorns starfish removal programme on Chumbe Island Coral Park, Zanzibar, Tanzania[C]//Proceedings of the 11th International Coral Reef Symposium. Fort Lauderdale: [s.n.], 2008: 1127–1131.
    [2] Caballes C F, Pratchett M S, Morgan S. Reproductive biology and early life history of the crown-of-thorns starfish[M]//Whitmore E. Echinoderms: Ecology, Habitats and Reproductive Biology. New York, USA: Nova Science Publishers, 2014: 101–146.
    [3] Pratchett M S, Caballes C F, Rivera-Posada J, et al. Limits to understanding and managing outbreaks of crown-of-thorns starfishes (Acanthaster spp.)[M]//Hughes R, Hughes D, Smith I. Oceanography and Marine Biology: An Annual Review. Boca Raton, FL: CRC Press, 2014: 133–200.
    [4] De’ath G, Fabricius K E, Sweatman H, et al. The 27-year decline of coral cover on the Great Barrier Reef and its causes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 17995−17999. doi: 10.1073/pnas.1208909109
    [5] Wilson S K, Graham N A J, Pratchett M S, et al. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient?[J]. Global Change Biology, 2006, 12(11): 2220−2234. doi: 10.1111/j.1365-2486.2006.01252.x
    [6] Larkum A W D. High rates of nitrogen fixation on coral skeletons after predation by the crown of thorns starfish Acanthaster planci[J]. Marine Biology, 1988, 97(4): 503−506. doi: 10.1007/BF00391046
    [7] Munday P L. Habitat loss, resource specialization, and extinction on coral reefs[J]. Global Change Biology, 2004, 10(10): 1642−1647. doi: 10.1111/j.1365-2486.2004.00839.x
    [8] Brodie J, Fabricius K, De’ath G, et al. Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence[J]. Marine Pollution Bulletin, 2005, 51(1−4): 266−278. doi: 10.1016/j.marpolbul.2004.10.035
    [9] Fabricius K E, Okaji K, De’ath G. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation[J]. Coral Reefs, 2010, 29(3): 593−605. doi: 10.1007/s00338-010-0628-z
    [10] 姚秋翠, 余克服, 廖芝衡, 等. 棘冠海星及其对珊瑚礁的生态影响研究进展[J]. 生态学报, 2022, doi: 10.5846/stxb202107312078.

    Yao Qiucui, Yu Kefu, Liao Zhiheng, et al. A review of research on crown-of-thorns starfish and their ecological effects on coral reefs[J]. Acta Ecologica Sinica, 2022, doi: 10.5846/stxb202107312078.
    [11] Keesing J K, Halford A R. Field measurement of survival rates of juvenile Acanthaster planci: techniques and preliminary results[J]. Marine Ecology Progress Series, 1992, 85(1/2): 107−114.
    [12] Ciarapica G, Passeri L. An overview of the maldivian coral reefs in Felidu and North Malé atoll (Indian Ocean): platform drowning by ecological crises[J]. Facies, 1993, 28(1): 33−65. doi: 10.1007/BF02539727
    [13] Cowan Z L, Pratchett M, Messmer V, et al. Known predators of crown-of-thorns starfish (Acanthaster spp. ) and their role in mitigating, if not preventing, population outbreaks[J]. Diversity, 2017, 9(1): 7. doi: 10.3390/d9010007
    [14] 邓华健. 渤海湾沉积物–水界面营养盐交换通量的研究[D]. 天津: 天津大学, 2004.

    Deng Huajian. The study on the exchange fluxes of nutrients at the sediment-water interface in Bohai Bay[D]. Tianjin: Tianjin University, 2004.
    [15] 方鑫. 海州湾海洋牧场沉积物–水界面营养盐交换特性及生物扰动作用的研究[D]. 上海: 上海海洋大学, 2018.

    Fang Xin. The exchange characteristics of nutrients and the bioturbation effects at the sediment-water interface in the marine ranching area of Haizhou Bay[D]. Shanghai: Shanghai Ocean University, 2018.
    [16] Biles C L, Paterson D M, Ford R B, et al. Bioturbation, ecosystem functioning and community structure[J]. Hydrology and Earth System Sciences, 2002, 6(6): 999−1005. doi: 10.5194/hess-6-999-2002
    [17] 张小勇. 黄、东海陆架沉积物中氮、磷的形态分布及与浮游植物的关系[D]. 青岛: 中国海洋大学, 2013.

    Zhang Xiaoyong. The distribution of nitrogen, phosphorus forms and the relationship with the total phytoplankton in the Yellow Sea and the East China Sea continental shelf[D]. Qingdao: Ocean University of China, 2013.
    [18] Reckhardt A, Beck M, Seidel M, et al. Carbon, nutrient and trace metal cycling in sandy sediments: a comparison of high-energy beaches and backbarrier tidal flats[J]. Estuarine, Coastal and Shelf Science, 2015, 159: 1−14. doi: 10.1016/j.ecss.2015.03.025
    [19] Furnas M, Alongi D, McKinnon D, et al. Regional-scale nitrogen and phosphorus budgets for the northern (14°S) and central (17°S) Great Barrier Reef shelf ecosystem[J]. Continental Shelf Research, 2011, 31(19/20): 1967−1990.
    [20] Ning Zhiming, Yu Kefu, Wang Yinghui, et al. Carbon and nutrient dynamics of permeable carbonate and silicate sands adjacent to coral reefs around Weizhou Island in the northern South China Sea[J]. Estuarine, Coastal and Shelf Science, 2019, 225: 106229. doi: 10.1016/j.ecss.2019.05.011
    [21] 宋金明, 李鹏程. 南沙群岛海域沉积物–海水界面间营养物质的扩散通量[J]. 海洋科学, 1996(5): 43−50.

    Song Jinming, Li Pengcheng. Studies on characteristics of nutrient diffusion fluxes across sediment-water interface in the district of Nansha Islands, South China Sea[J]. Marine Sciences, 1996(5): 43−50.
    [22] 李元超, 吴钟解, 梁计林, 等. 近15年西沙群岛长棘海星暴发周期及暴发原因分析[J]. 科学通报, 2019, 64(33): 3478−3484.

    Li Yuanchao, Wu Zhongjie, Liang Jilin, et al. Analysis on the outbreak period and cause of Acanthaster planci in Xisha Islands in recent 15 years[J]. Chinese Science Bulletin, 2019, 64(33): 3478−3484.
    [23] Ning Zhiming, Liu Sumei, Zhang Guoling, et al. Impacts of an integrated multi-trophic aquaculture system on benthic nutrient fluxes: a case study in Sanggou Bay, China[J]. Aquaculture Environment Interactions, 2016, 8: 221−232. doi: 10.3354/aei00144
    [24] Guo Jing, Yu Kefu, Wang Yinghui, et al. Potential impacts of anthropogenic nutrient enrichment on coral reefs in the South China Sea: evidence from nutrient and chlorophyll a levels in seawater[J]. Environmental Science: Processes & Impacts, 2019, 21(10): 1745−1753.
    [25] 陈露. 南沙、西沙群岛海域营养盐对浮游植物生长的影响[D]. 上海: 上海海洋大学, 2015.

    Chen Lu. Effects of nutrient on phytoplankton growth in the waters of the Nansha and Xisha Islands[D]. Shanghai: Shanghai Ocean University, 2015.
    [26] Heil C A, Revilla M, Glibert P M, et al. Nutrient quality drives differential phytoplankton community composition on the southwest Florida shelf[J]. Limnology and Oceanography, 2007, 52(3): 1067−1078. doi: 10.4319/lo.2007.52.3.1067
    [27] Lucas J S. Quantitative studies of feeding and nutrition during larval development of the coral reef asteroid Acanthaster planci (L. )[J]. Journal of Experimental Marine Biology & Ecology, 1982, 65(2): 173−193.
    [28] Brainard R, Maragos J, Schroeder R, et al. The state of coral reef ecosystems of the U. S. Pacific remote island areas[C]. Honolulu: NOAA Technical Memorandum NOS NCCOS, 2005: 338–372.
    [29] Houk P, Bograd S, van Woesik R. The transition zone chlorophyll front can trigger Acanthaster planci outbreaks in the Pacific Ocean: historical confirmation[J]. Journal of Oceanography, 2007, 63(1): 149−154. doi: 10.1007/s10872-007-0013-x
    [30] 郑珍珍. 海洋氨氧化过程对温度的响应[D]. 厦门: 厦门大学, 2018.

    Zheng Zhenzhen. The thermal response of marine ammonia oxidation[D]. Xiamen: Xiamen University, 2018.
    [31] Daims H, Lebedeva E, Pjevac P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504−509. doi: 10.1038/nature16461
    [32] Van Kessel M A H J, Speth D R, Albertsen M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583): 555−559. doi: 10.1038/nature16459
    [33] Smith J M, Chavez F P, Francis C A. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean[J]. PLoS One, 2014, 9(9): e108173. doi: 10.1371/journal.pone.0108173
    [34] Slomp C P, Malschaert J F P, van Raaphorst W. The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediments[J]. Limnology and Oceanography, 1998, 43(5): 832−846. doi: 10.4319/lo.1998.43.5.0832
    [35] 何其江, 刘刚, 王雪木, 等. 西沙群岛宣德环礁的精细水下地貌组合特征及其成因机制[J]. 海洋学报, 2021, 43(8): 81−92.

    He Qijiang, Liu Gang, Wang Xuemu, et al. Submarine geomorphologic features and genetic mechanism in the Xuande Atoll, Xisha Islands[J]. Haiyang Xuebao, 2021, 43(8): 81−92.
    [36] 李亮, 何其江, 龙根元, 等. 南海宣德海域表层沉积物粒度特征及其输运趋势[J]. 海洋地质与第四纪地质, 2017, 37(6): 140−148.

    Li Liang, He Qijiang, Long Genyuan, et al. Sediment grain size distribution pattern and transportation trend in the Xuande water, South China Sea[J]. Marine Geology and Quaternary Geology, 2017, 37(6): 140−148.
    [37] Wiedenmann J, D’Angelo C, Smith E G, et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching[J]. Nature Climate Change, 2013, 3(2): 160−164. doi: 10.1038/nclimate1661
    [38] Ning Zhiming, Fang Cao, Yu Kefu, et al. Influences of phosphorus concentration and porewater advection on phosphorus dynamics in carbonate sands around the Weizhou Island, northern South China Sea[J]. Marine Pollution Bulletin, 2020, 160: 111668. doi: 10.1016/j.marpolbul.2020.111668
    [39] Den Haan J, Huisman J, Brocke H J, et al. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse[J]. Scientific Reports, 2016, 6: 28821. doi: 10.1038/srep28821
    [40] Chen Xiaoyan, Yu Kefu, Huang Xueyong, et al. Atmospheric nitrogen deposition increases the possibility of macroalgal dominance on remote coral reefs[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(5): 1355−1369. doi: 10.1029/2019JG005074
    [41] Ning Xiuren, Chai Fei, Xue Huijie, et al. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C10): C10005. doi: 10.1029/2004JC002365
    [42] Furnas M, Mitchell A, Skuza M, et al. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon[J]. Marine Pollution Bulletin, 2005, 51(1/4): 253−265.
  • 加载中
图(3)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  120
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 修回日期:  2022-02-25
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2022-08-15

目录

    /

    返回文章
    返回