留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海及邻近海峡垂向位移负荷潮和自吸−负荷潮

徐晓庆 魏泽勋 滕飞 方国洪

徐晓庆,魏泽勋,滕飞,等. 南海及邻近海峡垂向位移负荷潮和自吸−负荷潮[J]. 海洋学报,2022,44(7):17–24 doi: 10.12284/hyxb2022112
引用本文: 徐晓庆,魏泽勋,滕飞,等. 南海及邻近海峡垂向位移负荷潮和自吸−负荷潮[J]. 海洋学报,2022,44(7):17–24 doi: 10.12284/hyxb2022112
Xu Xiaoqing,Wei Zexun,Teng Fei, et al. Vertical displacement loading tides and self-attraction and loading tides in the South China Sea and adjacent straits[J]. Haiyang Xuebao,2022, 44(7):17–24 doi: 10.12284/hyxb2022112
Citation: Xu Xiaoqing,Wei Zexun,Teng Fei, et al. Vertical displacement loading tides and self-attraction and loading tides in the South China Sea and adjacent straits[J]. Haiyang Xuebao,2022, 44(7):17–24 doi: 10.12284/hyxb2022112

南海及邻近海峡垂向位移负荷潮和自吸−负荷潮

doi: 10.12284/hyxb2022112
基金项目: 国家重点研发计划(2019YFC1408404);国家自然科学基金(42076024,42106032,41821004)。
详细信息
    作者简介:

    徐晓庆(1986-),女,山东省烟台市人,工程师,主要从事潮汐潮流与负荷潮方面研究。E-mail: xuxq@fio.org.cn

    通讯作者:

    魏泽勋(1970-),男,研究员,主要从事潮汐和环流动力学方面研究。E-mail: weizx@fio.org.cn

  • 中图分类号: P731.23

Vertical displacement loading tides and self-attraction and loading tides in the South China Sea and adjacent straits

  • 摘要: 本文采用Green函数方法,基于高分辨率南海海潮模型、DTU10全球海洋潮汐模型以及Gutenberg-Bullen A地球模型计算了南海及邻近海峡的负荷潮。结果表明,M2垂向位移负荷潮振幅最大值出现在台湾海峡,其值超过18 mm;另一个极大值区出现在加里曼丹岛西北外海,其值超过14 mm。K1和O1垂向位移负荷潮振幅在南海南部最大,分别超过18 mm和14 mm;另一个极大值区出现在北部湾,振幅超过8 mm。在研究海区内,全日潮的垂向位移负荷潮不出现无潮点。自吸−负荷潮分布特征与垂向位移负荷潮相近,其振幅大约是垂向位移负荷潮的1.2~1.7倍,其位相与垂向位移负荷潮基本上相反。M2自吸−负荷潮最大振幅值也出现台湾海峡和加里曼丹岛西北外海,其值分别超过24 mm和18 mm。
  • 图  1  南海及邻近海峡地形分布

    Fig.  1  Topographical distribution of the South China Sea and adjacent straits

    图  2  各种潮面的关系

    Fig.  2  Relationship among various tidal surfaces

    图  3  南海及邻近海峡分潮同潮图

    虚线为振幅(单位:cm);实线为格林威治迟角(单位:(°))

    Fig.  3  Cotidal charts for the South China Sea and adjacent straits

    Dashed lines indicate amplitude (unit: cm); solid lines indicate Greenwich phase-lag (unit: (°))

    图  4  M2(a)和S2(b)垂向位移负荷潮

    虚线为振幅(单位:mm);实线为格林威治迟角(单位:(°))

    Fig.  4  M2 (a) and S2 (b) vertical displacement loading tides

    Dashed lines indicate amplitude (unit: mm); solid lines indicate Greenwich phase-lag (unit: (°))

    图  7  K1(a)和O1(b)自吸−负荷潮

    虚线为振幅(单位:mm);实线为格林威治迟角(单位:(°))

    Fig.  7  K1 (a) and O1 (b) self-attraction and loading tides

    Dashed lines indicate amplitude (unit: mm); solid lines indicate Greenwich phase-lag (unit: (°))

    图  5  K1(a)和O1(b)垂向位移负荷潮

    虚线为振幅(单位:mm);实线为格林威治迟角(单位:(°))

    Fig.  5  K1 (a) and O1 (b) vertical displacement loading tides

    Dashed lines indicate amplitude (unit: mm); solid lines indicate Greenwich phase-lag (unir: (°))

    图  6  M2(a)和S2(b)自吸−负荷潮

    虚线为振幅(单位:mm);实线为格林威治迟角(单位:(°))

    Fig.  6  M2 (a) and S2 (b) self-attraction and loading tides

    Dashed lines indicate amplitude (unit: mm); solid lines indicate Greenwich phase-lag (unit: (°))

  • [1] Stepanov V N, Hughes C W. Parameterization of ocean self-attraction and loading in numerical models of the ocean circulation[J]. Journal of Geophysical Research, 2004, 109(C3): C03037. doi: 10.1029/2003JC002034
    [2] Fang Guohong, Xu Xiaoqing, Wei Zexun, et al. Vertical displacement loading tides and self-attraction and loading tides in the Bohai, Yellow, and East China Seas[J]. Science China Earth Sciences, 2013, 56(1): 63−70. doi: 10.1007/s11430-012-4518-9
    [3] Teng Fei, Fang Guohong, Xu Xiaoqing. Effects of internal tidal dissipation and self-attraction and loading on semidiurnal tides in the Bohai Sea, Yellow Sea and East China Sea: a numerical study[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(5): 987−1001. doi: 10.1007/s00343-017-6087-4
    [4] Apecechea M, Verlaan M, Zijl F, et al. Effects of self-attraction and loading at a regional scale: a test case for the Northwest European Shelf[J]. Ocean Dynamics, 2017, 67(6): 729−749. doi: 10.1007/s10236-017-1053-4
    [5] 姜锦东, 方国洪, 滕飞, 等. 内潮耗散与自吸−负荷潮对南海潮波影响的数值研究[J]. 海洋与湖沼, 2018, 49(3): 457−470.

    Jiang Jindong, Fang Guohong, Teng Fei, et al. Dissipation and self-attraction and loading of internal tides: impact on the tidal waves in the South China Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(3): 457−470.
    [6] Schindelegger M, Green J A M, Wilmes S B, et al. Can we model the effect of observed sea level rise on tides?[J]. Journal of Geophysical Research, 2018, 123(7): 4593−4609. doi: 10.1029/2018JC013959
    [7] Adhikari S, Ivins E R, Frederikse T, et al. Sea-level fingerprints emergent from GRACE mission data[J]. Earth System Science Data, 2019, 11(2): 629−646. doi: 10.5194/essd-11-629-2019
    [8] 汪一航, 方国洪, 魏泽勋, 等. 基于卫星高度计的全球大洋潮汐模式的准确度评估[J]. 地球科学进展, 2010, 25(4): 353−359.

    Wang Yihang, Fang Guohong, Wei Zexun, et al. Accuracy assessment of global ocean tide models base on satellite altimetry[J]. Advances in Earth Science, 2010, 25(4): 353−359.
    [9] Stammer D, Ray R D, Andersen O B, et al. Accuracy assessment of global barotropic ocean tide models[J]. Reviews of Geophysics, 2014, 52(3): 243−282. doi: 10.1002/2014RG000450
    [10] Zhou Xuhua, Wu Bin, Zhu Yaozhong, et al. The ocean tidal displacement corrections for earth crust movement network of China[J]. Chinese Astronomy and Astrophysics, 2002, 26(1): 81−87. doi: 10.1016/S0275-1062(02)00046-2
    [11] 许厚泽, 毛伟建. 中国大陆的海洋负荷潮汐改正模型[J]. 中国科学B辑, 1988(9): 984−994.

    Xu Houze, Mao Weijian. The correction model of ocean load tides in Chinese continent[J]. Science in China (B), 1988(9): 984−994.
    [12] 郑祎, 伍吉仓, 王解先, 等. 海潮模型和格林函数对海潮位移改正的影响[J]. 大地测量与地球动力学, 2002, 22(4): 71−76.

    Zheng Yi, Wu Jicang, Wang Jiexian, et al. Effect of ocean tide model and Green function on ocean tidal displacement correction[J]. Journal of Geodesy and Geodynamics, 2002, 22(4): 71−76.
    [13] 周江存, 许厚泽, 孙和平. 中国台湾地区海洋负荷潮汐对重力、位移、倾斜和应变固体潮观测的影响[J]. 大地测量与地球动力学, 2002, 22(1): 81−86.

    Zhou Jiangcun, Xu Houze, Sun Heping. Influence of ocean load tides on gravity, displacement, tilt and strain in Taiwan[J]. Journal of Geodesy and Geodynamics, 2002, 22(1): 81−86.
    [14] 袁林果, 丁晓利, 孙和平, 等. 利用GPS技术精密测定香港海潮负荷位移[J]. 中国科学: 地球科学, 2010, 53(7): 993−1007. doi: 10.1007/s11430-010-3076-2

    Yuan Linguo, Ding Xiaoli, Sun Heping, et al. Determination of ocean tide loading displacements in Hong Kong using GPS technique[J]. Science China: Earth Sciences, 2010, 53(7): 993−1007. doi: 10.1007/s11430-010-3076-2
    [15] 杜文成, 袁林果, 张宁宁, 等. 青岛台站重力固体潮和海潮负荷特征研究[J]. 大地测量与地球动力学, 2018, 38(9): 913−916, 942.

    Du Wencheng, Yuan Linguo, Zhang Ningning, et al. Study of Earth’s gravity tide and oceanic loading characteristics at Qingdao station[J]. Journal of Geodesy and Geodynamics, 2018, 38(9): 913−916, 942.
    [16] 赵红. 海潮负荷效应及利用GPS技术建立海潮负荷位移模型研究[J]. 测绘学报, 2018, 47(1): 133. doi: 10.11947/j.AGCS.2017.20170181

    Zhao Hong. Research on ocean tide loading and ocean tide loading displacement model estimated by GPS[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 133. doi: 10.11947/j.AGCS.2017.20170181
    [17] 王继刚, 周江存. 沿海和岛屿重力海潮负荷改正模型——以马祖岛为例[J]. 大地测量与地球动力学, 2020, 40(8): 794−798.

    Wang Jigang, Zhou Jiangcun. Correction model of ocean tide loading on gravity over coastal area and islands: a case study of Matzu Island[J]. Journal of Geodesy and Geodynamics, 2020, 40(8): 794−798.
    [18] Huang Pingping, Sulzbach R L, Tanaka Y, et al. Anelasticity and Lateral Heterogen-eities in Earth’s upper mantle: impact on surface displacements, self-attraction and loading, and ocean tide dynamics[J]. Journal of Geophysical Research, 2021, 126(9): e2021JB022332. doi: 10.1029/2021JB022332
    [19] 陈宗镛. 潮汐学[M]. 北京: 科学出版社, 1980.

    Chen Zongyong. Tidology[M]. Beijing: Science Press, 1980.
    [20] 方国洪, 郑文振, 陈宗镛, 等. 潮汐和潮流的分析和预报[M]. 北京: 海洋出版社, 1986.

    Fang Guohong, Zheng Wenzhen, Chen Zongyong, et al. Analysis and Prediction of Tides and Tidal Currents[M]. Beijing: China Ocean Press, 1986.
    [21] 黄祖珂, 黄磊. 潮汐原理与计算[M]. 青岛: 中国海洋大学出版社, 2005.

    Huang Zuke, Huang Lei. Tidal Theory and Calculation[M]. Qingdao: China Ocean University Press, 2005.
    [22] Wahr J M. Body tides on an elliptical, rotating, elastic and oceanless Earth[J]. Geophysical Journal International, 1981, 64(3): 677−703. doi: 10.1111/j.1365-246X.1981.tb02690.x
    [23] Farrell W E. Deformation of the Earth by surface loads[J]. Reviews of Geophysics, 1972, 10(3): 761−797. doi: 10.1029/RG010i003p00761
    [24] Francis O, Mazzega P. Global charts of ocean tide loading effects[J]. Journal of Geophysical Research, 1990, 95(C7): 11411−11424. doi: 10.1029/JC095iC07p11411
    [25] Agnew D C. NLOADF: a program for computing ocean-tide loading[J]. Journal of Geophysical Research, 1997, 102(B3): 5109−5110. doi: 10.1029/96JB03458
    [26] Agnew D C. SPOTL: some programs for ocean-tide loading. User’s Manual Version 3.3. 0[R]. US: Scripps Institution of Oceanography, 2012.
    [27] Ray R D. Ocean self-attraction and loading in numerical tidal models[J]. Marine Geodesy, 1998, 21(3): 181−192. doi: 10.1080/01490419809388134
    [28] Fang Guohong, Wang Yonggang, Wei Zexun, et al. Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry[J]. Journal of Geophysical Research, 2004, 109(11): C11006. doi: 10.1029/2004JC002484
    [29] Cheng Yongcun, Andersen O B. Multimission empirical ocean tide modeling for shallow waters and polar seas[J]. Journal of Geophysical Research, 2011, 116(C11): C11001.
  • 加载中
图(7)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  200
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2021-12-23
  • 网络出版日期:  2022-07-01
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回