留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰脊间遮掩作用对冰−水拖曳力影响的实验研究

王爽 卢鹏 祖永恒 张丽敏 王庆凯 李志军

王爽,卢鹏,祖永恒,等. 冰脊间遮掩作用对冰−水拖曳力影响的实验研究[J]. 海洋学报,2022,44(7):170–176 doi: 10.12284/hyxb2022104
引用本文: 王爽,卢鹏,祖永恒,等. 冰脊间遮掩作用对冰−水拖曳力影响的实验研究[J]. 海洋学报,2022,44(7):170–176 doi: 10.12284/hyxb2022104
Wang Shuang,Lu Peng,Zu Yongheng, et al. Experimental study on the sheltering effect between ice ridges on ice-water drag force[J]. Haiyang Xuebao,2022, 44(7):170–176 doi: 10.12284/hyxb2022104
Citation: Wang Shuang,Lu Peng,Zu Yongheng, et al. Experimental study on the sheltering effect between ice ridges on ice-water drag force[J]. Haiyang Xuebao,2022, 44(7):170–176 doi: 10.12284/hyxb2022104

冰脊间遮掩作用对冰−水拖曳力影响的实验研究

doi: 10.12284/hyxb2022104
基金项目: 国家自然科学基金(41922045,41876213);国家重点研发计划(2018YFA0605901);中央高校基本科研业务(DUT20GJ206)。
详细信息
    作者简介:

    王爽(1997-),女,辽宁省沈阳市人,博士生,主要从事海冰拖曳问题研究。E-mail: 21906217@mail.dlut.edu.cn

    通讯作者:

    卢鹏,男,教授,主要从事海冰动力学和海冰遥感研究。E-mail: lupeng@dlut.edu.cn

  • 中图分类号: P731.15;P941.62

Experimental study on the sheltering effect between ice ridges on ice-water drag force

  • 摘要: 为定量研究多冰脊之间的尾流遮掩作用对海冰漂移运动的影响,物理模型试验(试验有限水深为0.45 m)测量了多冰脊拖曳力的衰减变化。冰脊模型选用底角为45°的等腰直角三角形,选取了4种入水深度、9种冰脊间距进行测量。试验得到了前后冰脊拖曳力及其比值在尾流遮掩情况下的变化规律。前冰脊拖曳力与单冰脊情况一致,与冰脊速度的平方保持线性关系;而后冰脊在间距较小时出现了反向拖曳力,随冰脊间距的增大,后冰脊拖曳系数先减小再增大至不变。前后冰脊拖曳力比值的变化规律可以用指数遮掩函数来描述,该遮掩函数与冰脊间距和入水深度有关而与流速无关。通过与现有海冰模式中的遮掩函数对比,研究结论增强了该指数公式的适用性,加强了对海冰动力学模式中遮掩函数的理解。
  • 图  1  实验示意图(a)和物理模型实验装置图(b)

    Fig.  1  The sketch of the experimental study (a) and physical model test device diagram (b)

    图  2  前冰脊拖曳力F1随无量纲间距L/H的变化

    Fig.  2  Variation of drag force of front ice ridge F1 with dimensionless distance L/H

    图  3  后冰脊拖曳力F2随流速平方(V 2的变化情况

    Fig.  3  Variation of drag force of back ice ridge F2 with the square of velocity (V 2)

    图  4  后冰脊拖曳力F2随无量纲间距L/H的变化情况

    Fig.  4  Variation of drag force of back ice ridge F2 with dimensionless distance L/H

    图  5  拖曳力比值F2/F1随无量纲间距L/H的变化

    Fig.  5  The drag force ratio F2/F1 changes with the dimensionless distance L/H

    表  1  模型实验相似依据

    Tab.  1  Similarity basis of model experiment

    无因次数冰脊拖曳
    系数Cr
    无量纲
    间距
    雷诺数Re无量纲入水
    深度
    冰脊底角
    表达式$ {\dfrac{F}{ {\rho}{V}^{\text{2} }{H} } }$$ { \dfrac{{L} }{{H} } }$$ {\dfrac{ {VH} }{ {v} } }$$ {\dfrac{{D} }{{H} } }$a
    下载: 导出CSV
  • [1] 吴辉碇, 白珊, 张占海. 海冰动力学过程的数值模拟[J]. 海洋学报, 1998, 20(2): 1−13.

    Wu Huiding, Bai Shan, Zhang Zhanhai. Numerical simulation of sea ice dynamics[J]. Haiyang Xuebao, 1998, 20(2): 1−13.
    [2] Wamser C, Martinson D G. Drag coefficients for winter Antarctic pack ice[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(C7): 12431−12437. doi: 10.1029/93JC00655
    [3] 吴岩. 冰脊对冰下流场影响的数值模拟研究[D]. 大连: 大连理工大学, 2016.

    Wu Yan. Numerical simulation on the influence of ice ridges on the flow field under ice[D]. Dalian: Dalian University of Technology, 2016.
    [4] Lu Peng, Li Zhijun, Cheng Bin, et al. A parameterization of the ice-ocean drag coefficient[J]. Journal of Geophysical Research: Oceans, 2011, 116(C7): C07019.
    [5] Davis N R, Wadhams P. A statistical analysis of Arctic pressure ridge morphology[J]. Journal of Geophysical Research: Oceans, 1995, 100(C6): 10915. doi: 10.1029/95JC00007
    [6] Hanssen-Bauer I, Gjessing Y T. Observations and model calculations of aerodynamic drag on sea ice in the Fram Strait[J]. Tellus A, 1988, 40(2): 151−161. doi: 10.3402/tellusa.v40i2.11789
    [7] Lüpkes C, Gryanik V M, Hartmann J, et al. A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D13): D13112.
    [8] Tsamados M, Feltham D L, Schroeder D, et al. Impact of variable atmospheric and oceanic form drag on simulations of arctic sea ice[J]. Journal of Physical Oceanography, 2014, 44(5): 1329−1353. doi: 10.1175/JPO-D-13-0215.1
    [9] Tennekes H, Lumley J L. A First Course in Turbulence[M]. Cambridge: MIT Press, 1972.
    [10] Steele M, Morison J H, Untersteiner N. The partition of air-ice-ocean momentum exchange as a function of ice concentration, floe size, and draft[J]. Journal of Geophysical Research: Oceans, 1989, 94(C9): 12739−12750. doi: 10.1029/JC094iC09p12739
    [11] Zu Yongheng, Lu Peng, Yu Miao, et al. Laboratory experimental study of water drag force exerted on ridge keel[J]. Advances in Polar Science, 2020, 31(1): 41−47.
    [12] 沈国光, 项伟征. 海洋内波的相似性分析[J]. 天津大学学报, 2002, 35(6): 691−695.

    Shen Guoguang, Xiang Weizheng. Similarity analyses of ocean internal wave research[J]. Journal of Tianjin University, 2002, 35(6): 691−695.
    [13] Waters J K, Bruno M S. Internal wave generation by ice floes moving in stratified water: Results from a laboratory study[J]. Journal of Geophysical Research Oceans, 1995, 100(C7): 13635−13639. doi: 10.1029/95JC01220
    [14] Pite H D, Topham D R, Van Hardenberg B J. Laboratory measurements of the drag force on a family of two-dimensional ice keel models in a two-layer flow[J]. Journal of Physical Oceanography, 1995, 25(12): 3008−3031. doi: 10.1175/1520-0485(1995)025<3008:LMOTDF>2.0.CO;2
    [15] Zu Yongheng, Lu Peng, Leppäranta M, et al. On the form drag coefficient under ridged ice: Laboratory experiments and numerical simulations from ideal scaling to deep water[J]. Journal of Geophysical Research: Oceans, 2021, 126(8): e2020JC016976.
    [16] Lu Peng, Li Zhijun, Han Hongwei. Introduction of parameterized sea ice drag coefficients into ice free-drift modeling[J]. Acta Oceanologica Sinica, 2016, 35(1): 53−59. doi: 10.1007/s13131-016-0796-y
    [17] Hoerner S F. Fluid-dynamic drag[M] Theoretical, Experimental and Statistical Information. Vancouver: SF Hoerner Fluid Dynamics, 1958.
    [18] 黄明海, 齐鄂荣, 李炜. PIV在二维后向台阶流实验研究中的应用[J]. 武汉大学学报(工学版), 2005, 38(2): 35−38.

    Huang Minghai, Qi Erong, Li Wei. Study on 2D flow over a backward facing step flow with particle image velocimetry[J]. Journal of Wuhan University, 2005, 38(2): 35−38.
    [19] 张俊, 张晓婷. 流体传输中流体阻力和水头损失的计算[J]. 流体传动与控制, 2011(4): 24−27. doi: 10.3969/j.issn.1672-8904.2011.04.006

    Zhang Jun, Zhang Xiaoting. The analysis of the fluid resistance and the pressure loss in fluid transmission system[J]. Fluicl Power Transmission and Control, 2011(4): 24−27. doi: 10.3969/j.issn.1672-8904.2011.04.006
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  153
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 修回日期:  2021-12-17
  • 网络出版日期:  2022-07-01
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回