留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大西洋经向翻转环流对岁差响应的气候背景依赖性

邓凤飞 张旭

邓凤飞,张旭. 大西洋经向翻转环流对岁差响应的气候背景依赖性[J]. 海洋学报,2022,44(9):13–22 doi: 10.12284/hyxb2022099
引用本文: 邓凤飞,张旭. 大西洋经向翻转环流对岁差响应的气候背景依赖性[J]. 海洋学报,2022,44(9):13–22 doi: 10.12284/hyxb2022099
Deng Fengfei,Zhang Xu. Background climate dependence of Atlantic meridional overturning circulation responding to precessional change[J]. Haiyang Xuebao,2022, 44(9):13–22 doi: 10.12284/hyxb2022099
Citation: Deng Fengfei,Zhang Xu. Background climate dependence of Atlantic meridional overturning circulation responding to precessional change[J]. Haiyang Xuebao,2022, 44(9):13–22 doi: 10.12284/hyxb2022099

大西洋经向翻转环流对岁差响应的气候背景依赖性

doi: 10.12284/hyxb2022099
基金项目: 国家自然科学基金(42075047);国家重点研发项目(2020YFA0608902)
详细信息
    作者简介:

    邓凤飞(1997-),女,河南省洛阳市人,从事古气候模拟研究。E-mail:dengff19@lzu.edu.cn

    通讯作者:

    张旭(1986-),男,教授,博士生导师,从事古气候模拟研究。E-mail:xu.zhang@itpcas.ac.cn

  • 中图分类号: P731.27

Background climate dependence of Atlantic meridional overturning circulation responding to precessional change

  • 摘要: 大西洋经向翻转环流(Atlantic Meridional Overturning Circulation,AMOC)是气候系统重要的组成部分,其强度变化可直接影响南北半球的热量分配,厘清其变化机理对全球变暖背景下的未来预估至关重要。海洋沉积物记录发现,在晚更新世,AMOC的变化与地球岁差周期有紧密联系,但其物理机理尚不清楚。本文利用海洋−大气耦合气候模型—COSMOS(ECHAM5/JSBACH/MPIOM)模型,通过敏感试验,分析在冰盛期冷期和间冰期暖期气候背景下,AMOC对地球岁差变化的响应机理。结果表明:岁差降低引起的北半球夏季太阳辐射增强,会导致间冰期暖期背景下的AMOC显著减弱,但对冰盛期AMOC的影响并不明显。通过进一步分析发现,在间冰期暖期,夏季太阳辐射增强,造成高低纬大西洋海表的升温,同时促进北大西洋高纬度地区的局地降水,两者导致北大西洋表层海水密度降低,共同削弱大西洋深层水生成。而在冰盛期冷期,大西洋高低纬度地区的响应对AMOC的影响反向—副热带升温触发的海盆尺度低压异常,通过其南侧的西风异常削弱大西洋向太平洋的水汽输送,导致净降水增多,海表盐度下降;同时,高纬度升温造成的海冰减少,促进了海洋热丧失,海表失热变重,有利于大西洋深层水的生成,最终两者的共同作用导致AMOC对岁差变化的响应偏弱。本文系统揭示了不同气候背景下,岁差尺度AMOC变化的控制机理,对理解晚更新世AMOC重建记录中持续存在的岁差周期具有重要启示意义。
  • 图  1  工业革命前时期强(Pmin)、弱(Pmax)季节性背景下大气层顶辐射强迫差异场(修改自文献[27])

    Fig.  1  Anomalous field of solar radiation reaching the top of the atmosphere between strong (Pmin) and weak (Pmax) seasonal background under pre-industrial period (modified from reference [27])

    图  2  强、弱季节性背景下大西洋经向翻转环流(AMOC)的差异场

    Fig.  2  Atlantic meridional overturning circulation (AMOC) anomaly between strong and weak seasonal background

    图  3  工业革命前(PI)(a, c)和末次盛冰期(LGM)(b, d)背景下不同气候要素的差异场

    a. PI时期夏季海表温度−气压差异场;b. LGM时期夏季海表温度−气压差异场,a和b中填色代表温度差异,黑色等值线代表海平面气压差异(hPa);c. PI时期夏季海表有效降水−水汽输送差异场;d. LGM时期夏季海表有效降水−水汽输送差异场,c和d中填色代表有效降水差异,箭头代表水汽通量差异(单位:kg/(m·s))

    Fig.  3  Climate response to changes in precession under pre-industrial (PI) (a, c) and the glacial maximum period (LGM) (b, d) backgrounds

    a. Summer sea surface temperature-pressure difference field in PI period; b. the summer sea surface temperature-pressure difference field in LGM period, the coloring represents the temperature difference, and the black isoline represents the sea level pressure difference (hPa) field; c. the summer sea surface effective precipitation-water vapor transport difference field in PI period; d. the summer sea surface effective precipitation-water vapor transport difference field in LGM period, the coloring represents the difference of effective precipitation, and the arrow represents the difference of water vapor flux (unit : kg/(m·s))

    图  6  工业革命前(PI)和末次盛冰期(LGM),最高值与最低值的夏季海冰密集度和冬季垂直混合层深度的差异场

    a. PI时期夏季海冰密集度的差异场;b. LGM时期夏季海冰密集度的差异场;c.PI时期冬季垂直混合深度的差异场;d. LGM时期冬季垂直混合深度的差异场。绿线和红线分别对应PmaxPmin时期15%海冰密集度分界线

    Fig.  6  Anomalous fields of summer sea ice concentration and winter vertical mixing layer depth between Pmin and Pmax under pre-industrial (PI) and the glacial maximum (LGM) conditions

    a. The difference field of sea ice concentration in summer in PI period; b. the difference field of sea ice concentration in summer in LGM period; c. the difference field of vertical mixing layer depth in winter in PI period; d. difference field of vertical mixing layer depth in winter in LGM period. Green and red lines represent 15% sea ice concentration in Pmax and Pmin, respectively

    图  4  工业革命前(PI)和末次盛冰期(LGM)时期年均海表密度(a, d)、温度(b, e)、盐度(c, f)差异场(上行为强季节背景,下行是弱季节性背景)

    Fig.  4  Difference fields of average annual sea surface density (a, d), temperature (b, e) and salinity (c, f) during pre-industrial (PI) and the glacial maximum (LGM) periods (strong seasonal background on the top and weak seasonal background on the bottom)

    图  5  强、弱季节性情景北半球高纬年均有效降水差异场

    Fig.  5  Annual effective precipitation difference field at high latitude in the Northern Hemisphere under strong and weak seasonal scenarios

    A2  工业革命前(PI)和末次盛冰期(LGM)年均海冰分布

    A2  Climatology mean annual sea ice distribution during pre-industrial (PI) and the glacial maximum (LGM) periods

    图  7  强、弱季节性背景北半球高纬地表气温差异场

    绿线和红线分别对应 PmaxPmin时期 15% 海冰密集度分界线

    Fig.  7  Surface air temperature anomaly field at high latitude in the Northern Hemisphere under strong and weak seasonal background

    Green and red lines represent 15% sea ice concentration in Pmax and Pmin , respectively

    A1  工业革命前(PI)和末次盛冰期(LGM)强、弱季节性情景下的大西洋经向翻转环流分布

    a, c是强季节性背景;b, d是弱季节性背景

    A1  Spatial pattern of the Atlantic meridional overturning circulation under Pmin and Pmax in pre-industrial (PI) and the glacial maximum (LGM) periods

    a,c. PI climate background; b, d. LGM climate background

    表  1  具体试验设置

    Tab.  1  Specific experimental settings

    试验
    名称
    CO2含量
    /10−6
    CH4含量
    /10−9
    N2O含量
    /10−9
    偏心率倾角
    /(°)
    岁差
    /(°)
    等效海平
    面/m
    ORB0012807602700.0423.446900
    ORB0022807602700.0423.4462700
    ORB01lgm1853502000.0424.590116
    ORB02lgm1853502000.0424.5270116
    下载: 导出CSV

    A1  6°~14°N,90°~75°W区域的水汽输送(单位:kg/(m·s))

    A1  Integrated water vapor transport across area in 6°−14°N, 90°−75°W (unit: kg/(m·s))

    试验名称 水汽输送 年均春季夏季秋季冬季5−9月
    ORB001纬向−126.76−182.286−144.3918.16864−188.532−113.281
    经向−9.96022−26.44230.347412.409−56.155230.7718
    合成后127.151184.194147.54514.8563196.717117.386
    ORB002纬向−175.303−195.216−233.976−73.5462−198.475−200.19
    经向−13.9999−32.745431.056116.0139−70.324329.0856
    合成后175.861197.943236.02875.2694210.565202.292
    ORB01lgm纬向−92.5443−159.29−49.1301−15.8694−145.887−59.1867
    经向−11.8552−17.588527.6077−12.4783−44.961622.9494
    合成后93.3006160.25856.355620.1877152.65963.4803
    ORB02lgm纬向−142.635−176.768−165.993−58.9051−168.875−146.019
    经向−17.2861−27.658622.6438−1.23924−62.890420.189
    合成后143.679178.919167.5358.9181180.205147.408
    下载: 导出CSV
  • [1] Johns W E, Baringer M O, Beal L M, et al. Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N[J]. Journal of Climate, 2011, 24(10): 2429−2449. doi: 10.1175/2010JCLI3997.1
    [2] 李昕容, 杨海军, 王宇星. 大西洋热盐环流减弱对热带太平洋气候平均态及年际变率的影响[J]. 北京大学学报(自然科学版), 2014, 50(2): 242−250.

    Li Xinrong, Yang Haijun, Wang Yuxing. Influence of a weakened Atlantic thermohaline circulation on tropical Pacific climate mean state and ENSO variability[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(2): 242−250.
    [3] 周天军, 张学洪, 王绍武. 大洋温盐环流与气候变率的关系[J]. 科学通报, 2000, 45(11): 1052−1056. doi: 10.1007/BF02884990

    Zhou Tianjun, Zhang Xuehong, Wang Shaowu. The relationship between the thermohaline circulation and climate variability[J]. Chinese Science Bulletin, 2000, 45(11): 1052−1056. doi: 10.1007/BF02884990
    [4] 邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014, 29(1): 42−55. doi: 10.11867/j.issn.1001-8166.2014.01-0042

    Shao Qiuli, Zhao Jinping. On the deep water of the Nordic seas[J]. Advances in Earth Science, 2014, 29(1): 42−55. doi: 10.11867/j.issn.1001-8166.2014.01-0042
    [5] Gong Xun, Zhang Xiangdong, Lohmann G, et al. Higher Laurentide and Greenland ice sheets strengthen the North Atlantic Ocean circulation[J]. Climate Dynamics, 2015, 45(1/2): 139−150.
    [6] Stommel H. Thermohaline convection with two stable regimes of flow[J]. Tellus, 1961, 13(2): 224−230. doi: 10.3402/tellusa.v13i2.9491
    [7] Rahmstorf S. On the freshwater forcing and transport of the Atlantic thermohaline circulation[J]. Climate Dynamics, 1996, 12(12): 799−811. doi: 10.1007/s003820050144
    [8] Kuhlbrodt T, Griesel A, Montoya M, et al. On the driving processes of the Atlantic meridional overturning circulation[J]. Reviews of Geophysics, 2007, 45(2): RG2001.
    [9] Huang Boyin, Xue Yan, Kumar A, et al. AMOC variations in 1979−2008 simulated by NCEP operational ocean data assimilation system[J]. Climate Dynamics, 2012, 38(3/4): 513−525.
    [10] Milanković M. Canon of Insolation and the Ice-age Problem[M]. Belgrade: Royal Serbian Academy, 1941.
    [11] Zhang Xu, Lohmann G, Knorr G, et al. Abrupt glacial climate shifts controlled by ice sheet changes[J]. Nature, 2014, 512(7514): 290−294. doi: 10.1038/nature13592
    [12] Zhang Xu, Knorr G, Lohmann G, et al. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state[J]. Nature Geoscience, 2017, 10(7): 518−523. doi: 10.1038/ngeo2974
    [13] Lisiecki L E, Raymo M E, Curry W B. Atlantic overturning responses to Late Pleistocene climate forcings[J]. Nature, 2008, 456(7218): 85−88. doi: 10.1038/nature07425
    [14] Roeckner E, Bäuml G, Bonaventura L, et al. The atmospheric general circulation model ECHAM 5. Part I: model description[R]. Hamburg: Max-Planck-Institute for Meteorology, 2003.
    [15] Brovkin V, Raddatz T, Reick C H, et al. Global biogeophysical interactions between forest and climate[J]. Geophysical Research Letters, 2009, 36(7): L07405.
    [16] Marsland S J, Haak H, Jungclaus J H, et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates[J]. Ocean Modelling, 2003, 5(2): 91−127. doi: 10.1016/S1463-5003(02)00015-X
    [17] Knorr G, Butzin M, Micheels A, et al. A warm Miocene climate at low atmospheric CO2 levels[J]. Geophysical Research Letters, 2011, 38(20): L20701.
    [18] Knorr G, Lohmann G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5): 376−381. doi: 10.1038/ngeo2119
    [19] Stepanek C, Lohmann G. Modelling mid-Pliocene climate with COSMOS[J]. Geoscientific Model Development, 2012, 5(5): 1221−1243. doi: 10.5194/gmd-5-1221-2012
    [20] Wei Wei, Lohmann G, Dima M. Distinct modes of internal variability in the global meridional overturning circulation associated with the southern hemisphere westerly winds[J]. Journal of Physical Oceanography, 2012, 42(5): 785−801. doi: 10.1175/JPO-D-11-038.1
    [21] Wei Wei, Lohmann G. Simulated Atlantic multidecadal oscillation during the Holocene[J]. Journal of Climate, 2012, 25(20): 6989−7002. doi: 10.1175/JCLI-D-11-00667.1
    [22] Abelmann A, Gersonde R, Knorr G, et al. The seasonal sea-ice zone in the glacial southern Ocean as a carbon sink[J]. Nature Communications, 2015, 6: 8136. doi: 10.1038/ncomms9136
    [23] Zhang X, Lohmann G, Knorr G, et al. Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation[J]. Climate of the Past, 2013, 9(5): 2319−2333. doi: 10.5194/cp-9-2319-2013
    [24] Gong Xun, Knorr G, Lohmann G, et al. Dependence of abrupt Atlantic meridional ocean circulation changes on climate background states[J]. Geophysical Research Letters, 2013, 40(14): 3698−3704. doi: 10.1002/grl.50701
    [25] Maier E, Zhang X, Abelmann A, et al. North Pacific freshwater events linked to changes in glacial ocean circulation[J]. Nature, 2018, 559(7713): 241−245. doi: 10.1038/s41586-018-0276-y
    [26] Merlis T M, Schneider T, Bordoni S, et al. The tropical precipitation response to orbital precession[J]. Journal of Climate, 2013, 26(6): 2010−2021. doi: 10.1175/JCLI-D-12-00186.1
    [27] Ding Zhaomin, Huang Gang, Liu Fei, et al. Responses of global monsoon and seasonal cycle of precipitation to precession and obliquity forcing[J]. Climate Dynamics, 2021, 56(11/12): 3733−3747.
    [28] Wang Chunzai, Zhang Liping, Lee S K. Response of freshwater flux and sea surface salinity to variability of the Atlantic warm pool[J]. Journal of Climate, 2013, 26(4): 1249−1267. doi: 10.1175/JCLI-D-12-00284.1
    [29] Wu Chihua, Tsai P C. Obliquity-driven changes in East Asian seasonality[J]. Global and Planetary Change, 2020, 189: 103161. doi: 10.1016/j.gloplacha.2020.103161
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  131
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2022-03-01
  • 网络出版日期:  2022-04-14
  • 刊出日期:  2022-08-29

目录

    /

    返回文章
    返回