留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海假交替单胞菌(Pseudoalteromonas marinapilZ基因缺失抑制厚壳贻贝附着变态

张驰 王劲松 杨金龙 张俊波 万荣 梁箫

张驰,王劲松,杨金龙,等. 海假交替单胞菌(Pseudoalteromonas marina)pilZ基因缺失抑制厚壳贻贝附着变态[J]. 海洋学报,2022,44(4):95–103 doi: 10.12284/hyxb2022090
引用本文: 张驰,王劲松,杨金龙,等. 海假交替单胞菌(Pseudoalteromonas marinapilZ基因缺失抑制厚壳贻贝附着变态[J]. 海洋学报,2022,44(4):95–103 doi: 10.12284/hyxb2022090
Zhang Chi,Wang Jinsong,Yang Jinlong, et al. Knockout of Pseudoalteromonas marina pilZ gene inhibited the settlement and metamorphosis of Mytilus coruscus[J]. Haiyang Xuebao,2022, 44(4):95–103 doi: 10.12284/hyxb2022090
Citation: Zhang Chi,Wang Jinsong,Yang Jinlong, et al. Knockout of Pseudoalteromonas marina pilZ gene inhibited the settlement and metamorphosis of Mytilus coruscus[J]. Haiyang Xuebao,2022, 44(4):95–103 doi: 10.12284/hyxb2022090

海假交替单胞菌(Pseudoalteromonas marinapilZ基因缺失抑制厚壳贻贝附着变态

doi: 10.12284/hyxb2022090
基金项目: 国家自然科学基金(41876159,41476131);国家重点研发计划(2019YFC0312104,2020YFD0900804);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0402);上海市优秀学术带头人计划(20XD1421800)。
详细信息
    作者简介:

    张驰(1996-),男,江苏省徐州市人,从事海洋贝类分子生物学研究。E-mail:M190100015@st.shou.edu.cn

    通讯作者:

    梁箫(1983-),女,主要从事海洋贝类分子生物学研究。E-mail: x-liang@shou.edu.cn

  • 中图分类号: S968.31;Q938.8

Knockout of Pseudoalteromonas marina pilZ gene inhibited the settlement and metamorphosis of Mytilus coruscus

  • 摘要: 为探究海假交替单胞菌pilZ基因的缺失对生物被膜形成及突变菌生物被膜对厚壳贻贝幼虫附着变态的影响,本文通过同源重组构建pilZ基因缺失菌,分析了基因缺失菌生物被膜的细菌密度、膜厚、c-di-GMP水平和胞外产物含量等特性的变化及其对厚壳贻贝幼虫附着变态的调控作用。结果表明:与野生型菌株相比,pilZ基因缺失菌形成的生物被膜膜厚增加、细菌数量增多,胞外产物中β-多糖、蛋白含量减少,抑制了厚壳贻贝幼虫的附着变态(p<0.05);而c-di-GMP水平、α-多糖和脂质含量无显著变化(p>0.05)。由此可见,海假交替单胞菌pilZ基因的缺失可调控细菌生物被膜形成和胞外产物包括β-多糖、蛋白质的含量,从而抑制厚壳贻贝幼虫的附着变态。
  • 图  1  pilZ基因缺失验证(A)和缺失前后基因簇(B)

    Fig.  1  The pilZ gene deletion verification (A) and gene cluster (B) before and after knockout

    图  2  不同初始细菌密度下野生菌与ΔpilZ菌生物被膜对幼虫附着变态的影响(A)及生物被膜细菌密度的分析(B)

    图中不同字母表示在该初始细菌密度下,P. marina野生菌与ΔpilZ菌生物被膜的附着变态率或细菌密度组间有显著差异(p<0.05)

    Fig.  2  Effect of wild-type and ΔpilZ biofilms formed with different initial bacterial density on larval settlement and metamorphosis (A) and the analysis of biofilm bacterial density (B)

    Bars with different letters in the figure indicate that at the initial bacterial density, there’s a significant difference between the rate of larval settlement and metamorphosis or the bacterial density of P. marina wild-type and ΔpilZ biofilms (p<0.05)

    图  3  菌落形态

    Fig.  3  Colony morphology of bacteria

    图  4  野生型菌株和ΔpilZ菌株运动性(A)、生物被膜(C、D)和膜厚(B)

    Fig.  4  Motility (A), biofilm (C, D) and biofilm thickness (B) of wild-type and ΔpilZ strains

    图  5  野生型菌株和ΔpilZ菌株生物被膜共聚焦扫描图像(A)和统计结果(B)

    Fig.  5  Confocal scanning images (A) and statistical results (B) of biofilm of wild-type and ΔpilZ strains

    图  6  野生菌和ΔpilZ菌的胞内c-di-GMP水平

    Fig.  6  The c-di-GMP levels of wild-type and ΔpilZ strains

    表  1  本研究使用的细菌菌株和质粒

    Tab.  1  The strains and plasmids used in this study

    菌株/质粒相关特性来源
    菌株
    P. marina ECSMB14103
    E. coli WM3064
    ΔpilZ
    质粒

    野生型
    DAP缺陷型
    pilZ基因敲除菌株

    文献[18]
    文献[20]
    本研究
    pK18mobsacB-ery
    pK18mobsacB-ery-pilZ
    具有Kan和Ery抗性基因位点
    敲除pilZ基因的重组质粒
    文献[19]
    本研究
    下载: 导出CSV

    表  2  构建ΔpilZ菌株所使用的引物及其序列

    Tab.  2  Primers used to construct ΔpilZ strain and its sequences

    引物序列(5'-3'
    pilZ-up-FCGGGATCCAGGTGAACTTGACCGAATA
    pilZ-up-RCGGAATTCGGTTAATCCTTTTATTTATT
    pilZ-down-FCGGAATTCTAAAAAACAGGCCCAATTTT
    pilZ-down-RAACTGCAGGACAATGCCTGAAATAGAAA
    pilZ-SFCCCTGTGGGTGTAGGTAA
    pilZ-SRCGTCGCGTGTATGAATAA
    pilZ-LFCGACCGTCACGACTTATC
    pilZ-LRTGTTCGCTGACACTTTGC
    下载: 导出CSV

    表  3  激光共聚焦显微镜荧光染料信息

    Tab.  3  Laser confocal microscopy fluorescence dye information

    荧光染料名称结合物质工作液浓度/
    (μg·mL−1
    波长范围/
    nm
    碘化丙啶(PI)死细菌5560~700
    刀豆蛋白A(ConA-TMR)α-多糖944.8552~578
    荧光增白剂(CFW M2R)β-多糖189.0254~432
    DilC18(5)油(DiD`oil)脂类7.94648~670
    异硫氰酸荧光素异构体I(FITC)蛋白质46.6495~519
    下载: 导出CSV
  • [1] 李一峰, 杨金龙, 包卫洋, 等. 人工诱导物影响海洋无脊椎动物幼体附着变态的研究[J]. 海洋科学, 2011, 35(8): 102−107.

    Li Yifeng, Yang Jinlong, Bao Weiyang, et al. A review on artificial inducers influencing larval settlement and metamorphosis of marine invertebrates[J]. Marine Sciences, 2011, 35(8): 102−107.
    [2] Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623−633. doi: 10.1038/nrmicro2415
    [3] Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire[J]. Nature Reviews Microbiology, 2017, 15(5): 271−284. doi: 10.1038/nrmicro.2016.190
    [4] Peng Lihua, Liang Xiao, Xu Jiakang, et al. Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus[J]. Scientific Reports, 2020, 10(1): 2577. doi: 10.1038/s41598-020-59506-1
    [5] Peng Lihua, Liang Xiao, Chang Ruiheng, et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus[J]. Biofouling, 2020, 36(7): 753−765. doi: 10.1080/08927014.2020.1807520
    [6] Liang Xiao, Zhang Xiukun, Peng Lihua, et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis[J]. International Journal of Molecular Sciences, 2020, 21(3): 710. doi: 10.3390/ijms21030710
    [7] Hu Xiaomeng, Zhang Junbo, Ding Wenyang, et al. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition[J]. Biofouling, 2021, 37(8): 911−921. doi: 10.1080/08927014.2021.1981882
    [8] 蔡雨珊, 张秀坤, 竹攸汀, 等. 海假交替单胞菌(Pseudoalteromonas marina)鞭毛蛋白对生物被膜形成及厚壳贻贝附着的影响[J]. 海洋学报, 2021, 43(4): 75−83.

    Cai Yushan, Zhang Xiukun, Zhu Youting, et al. Effects of Pseudoalteromonas marina flagellin on biofilm formationand settlement of Mytilus coruscus[J]. Haiyang Xuebao, 2021, 43(4): 75−83.
    [9] Breaker R R. Prospects for riboswitch discovery and analysis[J]. Molecular Cell, 2011, 43(6): 867−879. doi: 10.1016/j.molcel.2011.08.024
    [10] Matsuyama B Y, Krasteva P V, Baraquet C, et al. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2): E209−E218. doi: 10.1073/pnas.1523148113
    [11] Ryjenkov D A, Simm R, Römling U, et al. The PilZ domain is a receptor for the second messenger c-di-GMP: thePilZ domain protein YcgR controls motility in enterobacteria[J]. The Journal of Biological Chemistry, 2006, 281(41): 30310−30314. doi: 10.1074/jbc.C600179200
    [12] Baker A E, Diepold A, Kuchma S L, et al. PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2016, 198(13): 1837−1846. doi: 10.1128/JB.00196-16
    [13] Valentini M, Filloux A. Multiple roles of c-di-GMP signaling in bacterial pathogenesis[J]. Annual Review of Microbiology, 2019, 73: 387−406. doi: 10.1146/annurev-micro-020518-115555
    [14] Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid[J]. Nature, 1987, 325(6101): 279−281. doi: 10.1038/325279a0
    [15] Merighi M, Lee V T, Hyodo M, et al. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa[J]. Molecular Microbiology, 2007, 65(4): 876−895. doi: 10.1111/j.1365-2958.2007.05817.x
    [16] Klausen M, Heydorn A, Ragas P, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants[J]. Molecular Microbiology, 2003, 48(6): 1511−1524. doi: 10.1046/j.1365-2958.2003.03525.x
    [17] Guzzo C R, Salinas R K, Andrade M O, et al. PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis[J]. Journal of Molecular Biology, 2009, 393(4): 848−866. doi: 10.1016/j.jmb.2009.07.065
    [18] Peng Lihua, Liang Xiao, Guo Xingpan, et al. Complete genome of Pseudoalteromonas marina ECSMB14103, a mussel settlement-inducing bacterium isolated from the East China Sea[J]. Marine Genomics, 2018, 41: 46−49. doi: 10.1016/j.margen.2018.04.001
    [19] Wang Pengxia, Yu Zichao, Li Baiyuan, et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas[J]. Microbial Cell Factories, 2015, 14: 11. doi: 10.1186/s12934-015-0194-8
    [20] Dehio C, Meyer M. Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli[J]. Journal of Bacteriology, 1997, 179(2): 538−540. doi: 10.1128/jb.179.2.538-540.1997
    [21] Zeng Zhenshun, Guo Xingpan, Li Baiyuan, et al. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10127−10139. doi: 10.1007/s00253-015-6865-x
    [22] Yang Jinlong, Shen Peijing, Liang Xiao, et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms[J]. Biofouling, 2013, 29(3): 247−259. doi: 10.1080/08927014.2013.764412
    [23] González-Machado C, Capita R, Riesco-Peláez F, et al. Visualization and quantification of the cellular and extracellular components of Salmonella agona biofilms at different stages of development[J]. PLoS One, 2018, 13(7): e0200011. doi: 10.1371/journal.pone.0200011
    [24] Bobrov A G, Kirillina O, Ryjenkov D A, et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis[J]. Molecular Microbiology, 2011, 79(2): 533−551. doi: 10.1111/j.1365-2958.2010.07470.x
    [25] Hickman J W, Tifrea D F, Harwood C S. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(40): 14422−14427. doi: 10.1073/pnas.0507170102
    [26] Chua Songlin, Hultqvist L D, Yuan Mingjun, et al. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation[J]. Nature Protocols, 2015, 10(8): 1165−1180. doi: 10.1038/nprot.2015.067
    [27] Whiteley C G, Lee D J. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development[J]. Biotechnology Advances, 2015, 33(1): 124−141. doi: 10.1016/j.biotechadv.2014.11.010
    [28] Simm R, Morr M, Kader A, et al. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility[J]. Molecular Microbiology, 2004, 53(4): 1123−1134. doi: 10.1111/j.1365-2958.2004.04206.x
    [29] Hengge R, Gründling A, Jenal U, et al. Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers[J]. Journal of Bacteriology, 2016, 198(1): 15−26. doi: 10.1128/JB.00331-15
    [30] Yoon S H, Waters C M. The ever-expanding world of bacterial cyclic oligonucleotide second messengers[J]. Current Opinion in Microbiology, 2021, 60: 96−103. doi: 10.1016/j.mib.2021.01.017
    [31] Omadjela O, Narahari A, Strumillo J, et al. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17856−17861. doi: 10.1073/pnas.1314063110
    [32] Richter A M, Possling A, Malysheva N, et al. Local c-di-GMP signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose[J]. Journal of Molecular Biology, 2020, 432(16): 4576−4595. doi: 10.1016/j.jmb.2020.06.006
    [33] Lee V T, Matewish J M, Kessler J L, et al. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production[J]. Molecular Microbiology, 2007, 65(6): 1474−1484. doi: 10.1111/j.1365-2958.2007.05879.x
    [34] Ghafoor A, Hay I D, Rehm B H A. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture[J]. Applied and Environmental Microbiology, 2011, 77(15): 5238−5246. doi: 10.1128/AEM.00637-11
    [35] Ryder C, Byrd M, Wozniak D J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development[J]. Current Opinion in Microbiology, 2007, 10(6): 644−648. doi: 10.1016/j.mib.2007.09.010
    [36] Liang Xiao, Zhang Junbo, Shao Anqi, et al. Bacterial cellulose synthesis gene regulates cellular c-di-GMP that control biofilm formation and mussel larval settlement[J]. International Biodeterioration & Biodegradation, 2021, 165: 105330.
    [37] Welker A, Cronenberg T, Zöllner R, et al. Molecular motors govern liquidlike ordering and fusion dynamics of bacterial colonies[J]. Physical Review Letters, 2018, 121(11): 118102. doi: 10.1103/PhysRevLett.121.118102
    [38] Bonazzi D, Lo Schiavo V, Machata S, et al. Intermittent pili-mediated forces fluidize Neisseria meningitidis aggregates promoting vascular colonization[J]. Cell, 2018, 174(1): 143−155.e16. doi: 10.1016/j.cell.2018.04.010
    [39] O’Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development[J]. Molecular Microbiology, 1998, 30(2): 295−304. doi: 10.1046/j.1365-2958.1998.01062.x
    [40] Semmler A B T, Whitchurch C B, Mattick J S. A re-examination of twitching motility in Pseudomonas aeruginosa[J]. Microbiology, 1999, 145(10): 2863−2873. doi: 10.1099/00221287-145-10-2863
    [41] Ward M J, Zusman D R. Regulation of directed motility in Myxococcus xanthus[J]. Molecular Microbiology, 1997, 24(5): 885−893. doi: 10.1046/j.1365-2958.1997.4261783.x
    [42] Li Yinuo, Sun Hong, Ma Xiaoyuan, et al. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9): 5443−5448. doi: 10.1073/pnas.0836639100
    [43] Zeng Zhenshun, Guo Xingpan, Cai Xingsheng, et al. Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling[J]. Microbial Biotechnology, 2017, 10(6): 1718−1731. doi: 10.1111/1751-7915.12773
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  248
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 修回日期:  2021-12-27
  • 刊出日期:  2022-04-14

目录

    /

    返回文章
    返回