留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海主要分潮振幅变化趋势再探

于茜 潘海东 吕咸青

于茜,潘海东,吕咸青. 南海主要分潮振幅变化趋势再探[J]. 海洋学报,2022,44(5):62–70 doi: 10.12284/hyxb2022083
引用本文: 于茜,潘海东,吕咸青. 南海主要分潮振幅变化趋势再探[J]. 海洋学报,2022,44(5):62–70 doi: 10.12284/hyxb2022083
Yu Qian,Pan Haidong,Lü Xianqing. The study of the trends of tidal amplitudes of major constituents in the South China Sea: A revisit[J]. Haiyang Xuebao,2022, 44(5):62–70 doi: 10.12284/hyxb2022083
Citation: Yu Qian,Pan Haidong,Lü Xianqing. The study of the trends of tidal amplitudes of major constituents in the South China Sea: A revisit[J]. Haiyang Xuebao,2022, 44(5):62–70 doi: 10.12284/hyxb2022083

南海主要分潮振幅变化趋势再探

doi: 10.12284/hyxb2022083
基金项目: 国家重点研发计划(2019YFC1408405);国家自然科学基金(42076011);青岛市博士后应用研究项目。
详细信息
    作者简介:

    于茜(1996-),女,山东省烟台市人,主要从事潮汐非平稳变化研究。E-mail: yuqian@stu.ouc.edu.cn

    通讯作者:

    潘海东,博士,博士后科研人员,主要从事潮汐非平稳变化研究。E-mail:panhaidong_phd@qq.com

  • 中图分类号: P722.4

The study of the trends of tidal amplitudes of major constituents in the South China Sea: A revisit

  • 摘要: 潮汐变化研究对于沿海地区海洋工程、洪涝灾害预防和海洋资源开发利用等各方面都有着非常重要的意义。之前的潮汐变化研究主要基于多年逐时验潮站观测,而验潮站数据无论是站点的个数还是站点的位置,都存在很大的局限性,这对我们研究海盆尺度的潮汐变化规律形成了一定程度的阻碍。前人基于25年的T/P-Jason卫星高度计数据发现南海中央深海海盆主要分潮振幅存在异常大的趋势,这是由于中尺度海洋运动对潮汐调和分析干扰导致的虚假结果。本文首次使用了X-TRACK软件处理过的长达27年的T/P-Jason卫星高度计观测来研究整个南海的主要分潮振幅的长期趋势。经过X-TRACK处理后的卫星观测数据在整个南海的准确性和完整性都有了显著的提升。同时,我们使用了权重最小二乘法来消除长周期采样导致的潮汐混淆的影响。我们发现在南海大部分海域,4大主要分潮的振幅都存在显著的变化趋势。振幅和迟角变化的极值主要分布在吕宋海峡西部、马六甲海峡和台湾海峡等水深和岸线变化剧烈的近海海域,振幅最大的上升趋势可达2.75 mm/a,振幅最大的下降趋势可达–2.16 mm/a。南海主要分潮振幅的长期趋势与河流径流以及人类活动密切相关。
  • 图  1  南海RADS数据沿轨缺测百分比(a)和X-TRACK数据沿轨缺测百分比(b)

    Fig.  1  Percentage of passes with missing RADS data (a) and percentage of passes with missing X-TRACK data (b) in the South China Sea

    图  2  南海M2分潮振幅线性趋势

    a. 空间分布图;b. 直方图

    Fig.  2  The linear trends of M2 amplitudes in the South China Sea

    a. Spatial pattern; b. histogram

    图  5  南海O1分潮振幅线性趋势

    a. 空间分布图;b. 直方图

    Fig.  5  The linear trends of O1 amplitudes in the South China Sea

    a. Spatial pattern; b. histogram

    图  6  南海中尺度校正后4大分潮振幅趋势极值的空间分布

    Fig.  6  Spatial distribution of the extreme trend of four tidal amplitudes after mesoscale correction in the South China Sea

    图  3  南海S2分潮振幅线性趋势

    a. 空间分布图;b. 直方图

    Fig.  3  The linear trends of S2 amplitudes in the South China Sea

    a. Spatial pattern; b. histogram

    图  4  南海K1分潮振幅线性趋势

    a. 空间分布图;b. 直方图

    Fig.  4  The linear trends of K1 amplitudes in the South China Sea

    a. Spatial pattern; b. histogram

    表  1  S_TIDE分辨的分潮的基本信息

    Tab.  1  Tidal constituents resolved in S_TIDE

    分潮杜德森数频率/h−1
    Mn0000100.000 006 129
    Sa00100–10.000 114 074
    Ssa0020000.000 228 159
    Mf0200000.003 050 092
    Q1n1–201–100.037 212 374
    Q11–201000.037 218 503
    O1n1–100–100.038 724 526
    O11–100000.038 730 654
    P111–20000.041 552 587
    K11100000.041 780 746
    K1n1100100.041 786 875
    J1120–1000.043 292 898
    N22–101000.078 999 249
    M2n2000–100.080 505 272
    M22000000.080 511 401
    S222–20000.083 333 333
    K22200000.083 561 492
    K2n2200100.083 567 624
    M44000000.161 022 801
    下载: 导出CSV

    表  2  从T/P-Jason卫星高度计观测得到的南海主要分潮振幅的长期趋势统计结果

    Tab.  2  The long-term trends of major constituents in the South China Sea obtained from T/P-Jason satellite altimeter data

    分潮趋势不显著的
    观测点百分比/%
    上升趋势的
    观测点百分比/%
    下降趋势的
    观测点百分比/%
    所有观测点
    趋势平均值
    /(mm·a−1)
    所有观测点
    趋势最大值
    /(mm·a−1)
    所有观测点
    趋势最小值
    /(mm·a−1)
    M219.0737.6040.960.052.20–1.23
    S217.39
    52.00
    30.61
    0.12
    2.44
    –1.63
    K119.9240.7539.330.012.75–2.16
    O120.7136.5342.76–0.051.48–2.15
    下载: 导出CSV

    表  3  从T/P-Jason卫星高度计观测得到的南海主要分潮的迟角长期趋势统计结果

    Tab.  3  The long-term trends of major tidal constituents’ phase in the South China Sea obtained from T/P-Jason satellite altimeter data

    分潮趋势不显著的
    观测点百分比/%
    上升趋势的
    观测点百分比/%
    下降趋势的
    观测点百分比/%
    所有观测点
    趋势最小值/((°)·a−1
    所有观测点
    趋势平均值/((°)·a−1
    所有观测点
    趋势最大值/((°)·a−1
    趋势最大值
    出现区域
    趋势最小值
    出现区域
    M245.3232.6921.99−0.920.041.01新加坡东部泰国湾
    S225.8943.8830.23−17.710.186.38新加坡东部新加坡东部
    K144.8224.6430.51−10.76−10.010.58泰国湾泰国湾
    O153.9019.2626.84−10.700.0023.53马六甲海峡马六甲海峡
    下载: 导出CSV
  • [1] Woodworth P L. A survey of recent changes in the main components of the ocean tide[J]. Continental Shelf Research, 2010, 30(15): 1680−1691. doi: 10.1016/j.csr.2010.07.002
    [2] Talke S A, Jay D A. Changing tides: the role of natural and anthropogenic factors[J]. Annual Review of Marine Science, 2020, 12: 121−151. doi: 10.1146/annurev-marine-010419-010727
    [3] Doodson A T. Perturbations of harmonic tidal constants[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1924, 106(739): 513−526.
    [4] Godin G. Possibility of rapid changes in the tide of the Bay of Fundy, based on a scrutiny of the records from Saint John[J]. Continental Shelf Research, 1992, 12(2/3): 327−338.
    [5] Godin G. Rapid evolution of the tide in the Bay of Fundy[J]. Continental Shelf Research, 1995, 15(2/3): 369−372.
    [6] Cartwright D E. Secular changes in the oceanic tides at Brest, 1711−1936[J]. Geophysical Journal International, 1972, 30(4): 433−449. doi: 10.1111/j.1365-246X.1972.tb05826.x
    [7] DiLorenzo J L, Huang Poshu, Thatcher M L, et al. Dredging impacts on Delaware Estuary tides[C]//Proceedings of the 3rd International Conference on Estuarine and Coastal Modeling III. Oak Brook, IL: ASCE, 1993, 19: 86−104.
    [8] Flick R E, Murray J F, Ewing L C. Trends in United States tidal datum statistics and tide range[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2003, 129(4): 155−164. doi: 10.1061/(ASCE)0733-950X(2003)129:4(155)
    [9] Ray R D. Secular changes of the M2 tide in the gulf of Maine[J]. Continental Shelf Research, 2006, 26(3): 422−427. doi: 10.1016/j.csr.2005.12.005
    [10] Pan Haidong, Lü Xianqing. Is there a Quasi 60-year oscillation in global tides?[J]. Continental Shelf Research, 2021, 222: 104433. doi: 10.1016/j.csr.2021.104433
    [11] 王延强, 仉天宇, 朱学明. 基于18.6年卫星高度计资料对南海潮汐的分析与研究[J]. 海洋预报, 2014, 31(2): 35−40. doi: 10.11737/j.issn.1003-0239.2014.02.006

    Wang Yanqiang, Zhang Tianyu, Zhu Xueming. Tidal characteristics analysis in the South China Sea by 18.6 years satellite altimetry data[J]. Marine Forecasts, 2014, 31(2): 35−40. doi: 10.11737/j.issn.1003-0239.2014.02.006
    [12] Pan Haidong, Guo Zheng, Lü Xianqing. Inversion of tidal open boundary conditions of the M2 constituent in the Bohai and Yellow Seas[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(8): 1661−1672. doi: 10.1175/JTECH-D-16-0238.1
    [13] 潘海东, 王雨哲, 吕咸青. 南海潮汐主要分潮振幅变化趋势研究[J]. 海洋学报, 2021, 43(6): 26−34.

    Pan Haidong, Wang Yuzhe, Lü Xianqing. The study of the trends of tidal amplitudes of major constituents in the South China Sea[J]. Haiyang Xuebao, 2021, 43(6): 26−34.
    [14] Pan Haidong, Lü Xianqing, Wang Yingying, et al. Exploration of tidal-fluvial interaction in the Columbia River Estuary using S_TIDE[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6598−6619. doi: 10.1029/2018JC014146
    [15] Wang Daosheng, Pan Haidong, Jin Guangzhen, et al. Seasonal variation of the principal tidal constituents in the Bohai Sea[J]. Ocean Science, 2020, 16(1): 1−14. doi: 10.5194/os-16-1-2020
    [16] Yu Qian, Pan Haidong, Gao Yanqiu, et al. The impact of the mesoscale ocean variability on the estimation of tidal harmonic constants based on satellite altimeter data in the South China Sea[J]. Remote Sensing, 2021, 13(14): 2736. doi: 10.3390/rs13142736
    [17] Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6479−6494. doi: 10.1002/2013JC008994
    [18] Gao Xiumin, Wei Zexun, Lü Xianqing, et al. Numerical study of tidal dynamics in the South China Sea with adjoint method[J]. Ocean Modelling, 2015, 92: 101−114. doi: 10.1016/j.ocemod.2015.05.010
    [19] Birol F, Fuller N, Lyard F, et al. Coastal applications from nadir altimetry: example of the X-TRACK regional products[J]. Advances in Space Research, 2017, 59(4): 936−953. doi: 10.1016/j.asr.2016.11.005
    [20] Vignudelli S, Birol F, Benveniste J, et al. Satellite altimetry measurements of sea level in the coastal zone[J]. Surveys in Geophysics, 2019, 40(6): 1319−1349. doi: 10.1007/s10712-019-09569-1
    [21] Jin Guangzhen, Pan Haidong, Zhang Qilin, et al. Determination of harmonic parameters with temporal variations: an enhanced harmonic analysis algorithm and application to internal tidal currents in the South China Sea[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(7): 1375−1398. doi: 10.1175/JTECH-D-16-0239.1
    [22] Pawlowicz R, Beardsley B, Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8): 929−937.
    [23] Guo Zheng, Pan Haidong, Fan Wei, et al. Application of surface spline interpolation in inversion of bottom friction coefficients[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(9): 2021−2028. doi: 10.1175/JTECH-D-17-0012.1
    [24] Pan Haidong, Zheng Quanxin, Lü Xianqing. Temporal changes in the response of the nodal modulation of the M2 tide in the Gulf of Maine[J]. Continental Shelf Research, 2019, 186: 13−20. doi: 10.1016/j.csr.2019.07.007
    [25] Cherniawsky J Y, Foreman M G G, Kang S K, et al. 18.6-year lunar nodal tides from altimeter data[J]. Continental Shelf Research, 2010, 30(6): 575−587. doi: 10.1016/j.csr.2009.10.002
    [26] Piccioni G, Dettmering D, Schwatke C, et al. Design and regional assessment of an empirical tidal model based on FES2014 and coastal altimetry[J]. Advances in Space Research, 2021, 68(2): 1013−1022. doi: 10.1016/j.asr.2019.08.030
    [27] Piccioni G, Dettmering D, Passaro M, et al. Coastal improvements for tide models: the impact of ALES retracker[J]. Remote Sensing, 2018, 10(5): 700. doi: 10.3390/rs10050700
    [28] Pan Haidong, Guo Zheng, Wang Yingying, et al. Application of the EMD method to river tides[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(4): 809−819. doi: 10.1175/JTECH-D-17-0185.1
    [29] Chant R J, Sommerfield C K, Talke S A. Impact of channel deepening on tidal and gravitational circulation in a highly engineered estuarine basin[J]. Estuaries and Coasts, 2018, 41(6): 1587−1600. doi: 10.1007/s12237-018-0379-6
    [30] Familkhalili R, Talke S A. The effect of channel deepening on tides and storm surge: A case study of Wilmington, NC[J]. Geophysical Research Letters, 2016, 43(17): 9138−9147. doi: 10.1002/2016GL069494
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  94
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-18
  • 修回日期:  2021-11-23
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回