留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

安达曼海东部凹陷渐新世以来断裂–构造演化特征及其成因探讨

闫恒 栾锡武 李振春 叶传红 魏新元 贺华瑞

闫恒,栾锡武,李振春,等. 安达曼海东部凹陷渐新世以来断裂–构造演化特征及其成因探讨[J]. 海洋学报,2022,44(9):87–99 doi: 10.12284/hyxb2022067
引用本文: 闫恒,栾锡武,李振春,等. 安达曼海东部凹陷渐新世以来断裂–构造演化特征及其成因探讨[J]. 海洋学报,2022,44(9):87–99 doi: 10.12284/hyxb2022067
Yan Heng,Luan Xiwu,Li Zhenchun, et al. Evolution characteristics and genesis of fault-structure in the eastern Andaman Sea depression since the Oligocene[J]. Haiyang Xuebao,2022, 44(9):87–99 doi: 10.12284/hyxb2022067
Citation: Yan Heng,Luan Xiwu,Li Zhenchun, et al. Evolution characteristics and genesis of fault-structure in the eastern Andaman Sea depression since the Oligocene[J]. Haiyang Xuebao,2022, 44(9):87–99 doi: 10.12284/hyxb2022067

安达曼海东部凹陷渐新世以来断裂–构造演化特征及其成因探讨

doi: 10.12284/hyxb2022067
基金项目: 国家自然科学基金(92055211);中国–东盟海洋地震数据平台与研究中心建设项目(12120100500017001)
详细信息
    作者简介:

    闫恒(1997-),男,安徽省阜阳市人,主要从事海洋地球物理勘探研究工作。E-mail: 1002941347@qq.com

    通讯作者:

    栾锡武(1966-),男,山东省青岛市人,教授,主要从事海洋地质地球物理研究。E-mail:xluan@sdust.edu.cn

  • 中图分类号: P618.13

Evolution characteristics and genesis of fault-structure in the eastern Andaman Sea depression since the Oligocene

  • 摘要: 本文研究内容为印度洋东北部边缘海安达曼海的构造演化。利用安达曼海域东部大范围二维地震数据资料及钻井数据,结合区域地质概况以及前人研究成果,选取8条具有代表性的断层并将其划分为一级和二级断裂,运用生长指数法和古落差法对断层进行定量分析,再通过计算安达曼海东部凹陷4条主测线的构造沉降量,探讨构造演化过程。结果表明:选取的生长断层中3条属于一级断裂,跨度大,几乎切穿整个地层,属于控制安达曼海域地区沉降的大断裂;另外5条属于二级断裂,控制构造带的展布情况,属于构造带的分界线。渐新世时期,印度–澳大利亚板块与欧亚板块之间处于软碰撞阶段,断层发育缓慢,上下盘落差较小,生长指数与构造沉降量也处于低值;中新世时期,板块之间的耦合效应不断增强,断层发育速度加快,此时上下盘厚度最大,是形成多处断裂带以及多种断裂样式的关键时期,各地层生长指数和构造沉降量也达到峰值。上新世至今,安达曼海沟–弧–盆体系逐渐稳定,断层活动减弱,断裂上下盘厚度差基本一致,生长指数差异较小,构造沉降量基本稳定在 1 km 左右。
  • 图  1  安达曼海构造单元划分(据文献[56]修改)

    Fig.  1  Division of tectonic units in the Andaman Sea (modified from references [56])

    图  2  安达曼海地层沉积柱状图(据文献[1, 5, 8]修改)

    Fig.  2  Stratigraphic and sedimentary bars of the Andaman Sea (modified from references [1, 5, 8])

    图  3  研究区测线分布(据文献[6]修改)

    Fig.  3  Survey lines distribution in the study area (modified from reference [6])

    图  4  断层(F1–F8)二维分布(位置见图3)

    Fig.  4  Typical faults (F1–F8) are distributed in two dimensions (the location is shown in Fig. 3)

    图  5  断裂组合样式(具体位置见图4)

    Fig.  5  Fault assemblage pattern (the location is shown in Fig. 4)

    图  6  F1–F8断层生长指数和落差分析

    Fig.  6  F1−F8 fault growth index and drop analysis

    图  7  过M1507-03测线地震剖面图

    Fig.  7  Seismic section through line M1507-03

    图  8  过M1507-15测线地震剖面图

    Fig.  8  Seismic section through line M1507-15

    图  9  典型剖面构造沉降量

    图中不同颜色折线代表每隔10 km提取一道层位信息

    Fig.  9  Tectonic settlement amount of typical section

    The broken lines with different colors in the figure represent a layer information extracted every 10 km

    图  10  安达曼海构造演化过程(据文献[26, 30]修改)

    Fig.  10  Tectonic evolution of the Andaman Sea (modified from references [26, 30])

  • [1] Diehl T, Waldhauser F, Cochran J R, et al. Back-arc extension in the Andaman Sea: tectonic and magmatic processes imaged by high-precision teleseismic double-difference earthquake relocation[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2206−2224. doi: 10.1002/jgrb.50192
    [2] 范桃园, 陈群策, 吴中海, 等. 青藏高原东缘活动构造与现今地应力场三维粘弹性模拟研究[J]. 地球物理学进展, 2013, 28(3): 1140−1149. doi: 10.6038/pg20130305

    Fan Taoyuan, Chen Qunce, Wu Zhonghai, et al. 3D viscoelastic modeling on the present crustal stress of eastern Qingzang Plateau including active tectonics[J]. Progress in Geophysics, 2013, 28(3): 1140−1149. doi: 10.6038/pg20130305
    [3] Saha A, Mudholkar A V, Raju K A K, et al. Geochemical characteristics of basalts from Andaman subduction zone: implications on magma genesis at intraoceanic back-arc spreading centres[J]. Geological Journal, 2019, 54(6): 3489−3508. doi: 10.1002/gj.3345
    [4] Lu Yintao, Shi Boqing, Maselli V, et al. Different types of gravity-driven flow deposits and associated bedforms in the Upper Bengal Fan, offshore Myanmar[J]. Marine Geology, 2021, 441: 106609. doi: 10.1016/j.margeo.2021.106609
    [5] Pandey D K, Anitha G, Prerna R, et al. Late Cenozoic seismic stratigraphy of the Andaman Forearc Basin, Indian Ocean[J]. Petroleum Science, 2017, 14(4): 648−661. doi: 10.1007/s12182-017-0197-7
    [6] Curray J R. Tectonics and history of the Andaman Sea region[J]. Journal of Asian Earth Sciences, 2005, 25(1): 187−232. doi: 10.1016/j.jseaes.2004.09.001
    [7] Morley C K. Cenozoic structural evolution of the Andaman Sea: evolution from an extensional to a sheared margin[J]. Geological Society, London, Special Publication, 2016, 431: 39−61. doi: 10.1144/SP431.1
    [8] Mahattanachai T, Morley C K, Charusiri P, et al. The Andaman Basin central fault zone, Andaman Sea: characteristics of a major deepwater strike-slip fault system in a polyphase rift[J]. Marine and Petroleum Geology, 2021, 128: 104997. doi: 10.1016/j.marpetgeo.2021.104997
    [9] 何文刚, 梅廉夫, 朱光辉, 等. 安达曼海海域盆地构造及其演化特征研究[J]. 断块油气田, 2011, 18(2): 178−182.

    He Wengang, Mei Lianfu, Zhu Guanghui, et al. Study on tectonic and evolution characteristics of basins in Andaman Sea[J]. Fault-Block Oil & Gas Field, 2011, 18(2): 178−182.
    [10] Zhou P X, Xia S H. Effects of the heterogeneous subducting plate on seismicity: constraints from b-values in the Andaman–Sumatra–Java subduction zone[J]. Physics of the Earth and Planetary Interiors, 2020, 304: 106499. doi: 10.1016/j.pepi.2020.106499
    [11] Jourdain A, Singh S C, Escartin J, et al. Crustal accretion at a sedimented spreading center in the Andaman Sea[J]. Geology, 2016, 44(5): 351−354. doi: 10.1130/G37537.1
    [12] 冉伟民, 栾锡武, 邵珠福, 等. 东海陆架盆地南部生长断层活动特征[J]. 海洋地质与第四纪地质, 2019, 39(1): 100−112.

    Ran Weimin, Luan Xiwu, Shao Zhufu, et al. Research on characteristics of growth faults in the southern East China Sea shelf basin[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 100−112.
    [13] 雷宝华. 生长断层活动强度定量研究的主要方法评述[J]. 地球科学进展, 2012, 27(9): 947−956.

    Lei Baohua. Review of methods with quantitative studies of activity intensity of the growth fault[J]. Advances in Earth Sciences, 2012, 27(9): 947−956.
    [14] Khan P K, Chakraborty P P. Two-phase opening of Andaman Sea: a new seismotectonic insight[J]. Earth and Planetary Science Letters, 2005, 229(3/4): 259−271.
    [15] Gokarn S G, Gupta G, Dutta S, et al. Geoelectric structure in the Andaman Islands using magnetotelluric studies[J]. Earth, Planets and Space, 2006, 58(2): 259−264. doi: 10.1186/BF03353386
    [16] 王嘉, 栾锡武, 何兵寿, 等. 珠江口盆地开平凹陷断裂构造特征与动力学机制探讨[J]. 海洋学报, 2021, 43(8): 41−53.

    Wang Jia, Luan Xiwu, He Bingshou, et al. Study on the structural characteristics and dynamic mechanism of faults in the Kaiping Sag of Zhujiang River Mouth Basin[J]. Haiyang Xuebao, 2021, 43(8): 41−53.
    [17] Luan X, Islam M S, Wei X, et al. Hydrocarbon accumulation in an active accretionary prism, a case study in the deepwater Rakhine Basin, Myanmar offshore[J]. Journal of Asian Earth Sciences, 2021, 221: 104941. doi: 10.1016/j.jseaes.2021.104941
    [18] Singha P, Dewangan P, Raju K A K, et al. Geometry of the subducting Indian plate and local seismicity in the Andaman region from the passive OBS experiment[J]. Bulletin of the Seismological Society of America, 2019, 109(2): 797−811. doi: 10.1785/0120180178
    [19] Mohan K, Dangwal S G V, Sengupta S, et al. Andaman Basin—a future exploration target[J]. The Leading Edge, 2006, 25(8): 964−967. doi: 10.1190/1.2335164
    [20] 栾锡武 . 东南亚构造分区[J]. 地球科学进展, 2022, 37(3): 1−32

    Luan Xiwu. Southeast Asia tectonic division[J]. Advances in Earth Science: 2022, 37(3): 1−32
    [21] Bhat G R, Balaji S, Yousuf M, et al. Primary on fault paleoseismic evidences from trench investigation along the Bathubasti fault, South Andaman, India[J]. Journal of Seismology, 2020, 24(6): 1159−1173. doi: 10.1007/s10950-020-09942-3
    [22] 谢楠, 姜烨, 朱光辉, 等. 缅甸Sagaing走滑断裂及对睡宝盆地构造演化的控制和影响[J]. 现代地质, 2010, 24(2): 268−272. doi: 10.3969/j.issn.1000-8527.2010.02.010

    Xie Nan, Jiang Ye, Zhu Guanghui, et al. Evolution of the Sagaing strike-slip fault and its control of Shwebo basin structural evolution, Myanmar[J]. Geoscience, 2010, 24(2): 268−272. doi: 10.3969/j.issn.1000-8527.2010.02.010
    [23] Morley C K, Alvey A. Is spreading prolonged, episodic or incipient in the Andaman Sea? Evidence from deepwater sedimentation[J]. Journal of Asian Earth Sciences, 2015, 98: 446−456. doi: 10.1016/j.jseaes.2014.11.033
    [24] Jafri S H, Sarma D S, Khan T, et al. Geochemical characteristics of the Late Cretaceous radiolarian cherts from North Andaman Island, Bay of Bengal, India[J]. Journal of Earth System Science, 2020, 129(1): 103−110. doi: 10.1007/s12040-020-1368-2
    [25] Rangin C, Maurin T, Masson F. Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma[J]. Journal of Asian Earth Sciences, 2013, 76: 185−194. doi: 10.1016/j.jseaes.2013.05.018
    [26] Raju K A K, Murty G P S, Amarnath D, et al. The west Andaman fault and its influence on the aftershock pattern of the recent megathrust earthquakes in the Andaman-Sumatra region[J]. Geophysical Research Letters, 2007, 34(3): L03305.
    [27] Khan P K, Shamim S, Mohanty M, et al. Myanmar-Andaman-Sumatra subduction margin revisited: insights of arc-specific deformations[J]. Journal of Earth Science, 2017, 28(4): 683−694. doi: 10.1007/s12583-017-0752-6
    [28] Sautter B, Pubellier M, Schlögl S K, et al. Exhumation of west Sundaland: a record of the path of India?[J]. Earth-Science Reviews, 2019, 198: 102933. doi: 10.1016/j.earscirev.2019.102933
    [29] Venkatesan M I, Ruth E, Rao P S, et al. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean[J]. Applied Geochemistry, 2003, 18(6): 845−861. doi: 10.1016/S0883-2927(02)00180-4
    [30] Raju K A K, Ramprasad T, Rao P S, et al. New insights into the tectonic evolution of the Andaman Basin, Northeast Indian Ocean[J]. Earth and Planetary Science Letters, 2004, 221(1/4): 145−162.
    [31] Okal E A. The large Andaman islands earthquake of 26 June 1941: why no significant tsunami[J]. Pure and Applied Geophysics, 2019, 176(7): 2869−2886. doi: 10.1007/s00024-018-2082-8
    [32] Phoosongsee J, Morley C K, Ferguson A J. Quantitative interpretation of seismic attributes for reservoir characterization of Early-Middle Miocene syn- and post-rift successions (Songkhla Basin, Gulf of Thailand)[J]. Marine and Petroleum Geology, 2019, 109: 791−807. doi: 10.1016/j.marpetgeo.2019.07.001
  • 加载中
图(10)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  145
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-02-09
  • 网络出版日期:  2022-04-27
  • 刊出日期:  2022-08-29

目录

    /

    返回文章
    返回