Analysis of combining ability and heterosis of growth and comprehensive stress tolerance traits of Litopenaeus vannamei multi-generation breeding population
-
摘要: 为筛选凡纳滨对虾(Litopenaeus vannamei)最佳的交配组合方式,以5个不同遗传背景的凡纳滨对虾群体为亲本,经交配构建12个组合F1代。利用ASReml4软件估计凡纳滨对虾12个组合105日龄的生长和耐综合胁迫(高盐(35)、低pH(6±0.1)与高氨氮(70 mg/L)共同胁迫)性状的一般配合力(GCA)及特殊配合力(SCA)。结果显示:亲本的SCA对子代性状的表现起主导作用,组合K♀×K♂(0.35±0.25)、GX♀×W♂(0.31±0.22)和GX♀×M♂(0.29±0.29)体质量的SCA排名靠前;组合GX♀×GX♂(3.65±1.79)、L♀×L♂(2.19±2.33)和W♀×GX♂(1.30±2.03)耐综合胁迫的SCA排名靠前。杂种优势分析表明,杂交组合的生长(体质量、体长、头胸甲长与腹节全长)和耐综合胁迫性状均表现出一定的杂种优势,6个杂交组合GX♀×W♂、GX♀×K♂、GX♀×M♂、W♀×GX♂、K♀×GX♂与K♀×M♂生长及耐综合胁迫性状的杂种优势率除组合GX♀×K♂为负外(−5.95%~1.00%和−8.03%),其余均为正(0.10%~80.79%和6.87%~42.86%),其中,组合GX♀×W♂体质量的杂种优势最高(25.52%);组合W♀×GX♂耐综合胁迫的杂种优势较高(41.72%)。研究表明,杂交组合GX♀×W♂体质量的SCA和杂种优势均最高;杂交组合W♀×GX♂耐综合胁迫的SCA最高且杂种优势较高,可考虑分别加强该两组合在生长和耐综合胁迫性状方面的配套杂交应用。Abstract: This research aimed to screen the best mating combinations of Litopenaeus vannamei. Five populations of L. vannamei with different genetic backgrounds were used as parents, and 12 combinations of the F1 generation were constructed by mating. The ASReml4 software was used to estimate the general fitness (GCA) and specific fitness (SCA) for growth and tolerance to combined stress (high salt (35), low pH (6±0.1), and high ammonia nitrogen (70 mg/L) co-stress) traits of the 12 combinations of P105 in L. vannamei. The results showed that the SCA of the parents played a dominant role in the performance of offspring traits, with combinations K♀×K♂(0.35±0.25), GX♀×W♂(0.31±0.22) and GX♀×M♂(0.29±0.29) ranking high in SCA for body mass; combinations GX♀×GX♂(3.65±1.79), L♀×L♂(2.19±2.33) and W♀×GX♂(1.30±2.03) ranking high in SCA for tolerance to combined stress. The analysis of heterozygous dominance H showed that the crosses showed some heterozygous dominance for growth (body mass, body length, cephalothorax length, and full length of ventral segments) and stress tolerance traits, and the H for growth and stress tolerance traits of the six crosses GX♀×W♂, GX♀×K♂, GX♀×M♂, W♀×GX♂, K♀×GX♂ and K♀×M♂ were negative except for the combination GX♀×K♂ (0.10%−80.79% and 6.87%−42.86%), with the highest H for the combination GX♀×W♂ body mass (25.52%) and the higher H for the combination W♀×GX♂ tolerance to combined stress (41.72%). The study showed that the hybrid combination GX♀×W♂ had the highest SCA and H for body mass; the hybrid combination W♀×GX♂ had the highest SCA and higher H for tolerance to combined stress, which can be considered to enhance the application of the two combinations in matching crosses for growth and combined stress tolerance traits respectively.
-
Key words:
- Litopenaeus vannamei /
- growth traits /
- comprehensive stress tolerance /
- combining ability /
- heterosis
-
表 1 凡纳滨对虾5个不同遗传背景群体的不完全双列杂交
Tab. 1 Incomplete diallel crossing of five populations of Litopenaeus vannamei with different genetic backgrounds
亲本 GX♂ W♂ L♂ K♂ M♂ GX♀ 10 3 − 4 1 W♀ 5 2 − − 1 L♀ − − 2 − − K♀ 5 − − 2 1 M♀ − − − − 2 合计 20 5 2 6 5 注:表中数字表示成功构建的家系数,−代表家系构建未成功。 表 2 凡纳滨对虾生长和耐综合胁迫性状的GCA效应值
Tab. 2 GCA effect value of growth and comprehensive stress tolerance traits of Litopenaeus vannamei
亲本群体 一般配合力 体质量 体长 头胸甲长 腹节全长 耐综合胁迫 母本 GX 5.31×10−7±0.000 5 2.81×10−6±0.002 6 −2.71×10−6±0.000 8 −0.49±0.401 0 1.46±1.614 2 W −1.23×10−6±0.000 5 −5.70×10−6±0.002 6 7.79×10−7±0.000 8 0.29±0.422 1 −0.86±1.681 1 L 2.40×10−7±0.000 5 1.15×10−6±0.002 6 4.80×10−7±0.000 8 0.01±0.478 6 1.11±1.856 6 K 4.67×10−7±0.000 5 2.08×10−6±0.002 6 1.24×10−6±0.000 8 0.08±0.421 9 −0.93±1.687 87 M −1.08×10−8±0.000 5 −3.37×10−7±0.002 6 2.15×10−7±0.000 8 0.11±0.475 0 −0.79±1.861 7 父本 GX 1.19×10−7±0.000 5 1.19×10−6±0.003 3 −1.05×10−6±0.000 8 −0.04±0.424 8 7.63×10−6±0.005 4 W −8.90×10−7±0.000 5 −9.34×10−6±0.003 3 2.03×10−6±0.000 8 0.29±0.473 5 −1.80×10−6±0.005 4 L 2.40×10−7±0.000 5 1.91×10−6±0.003 3 4.80×10−7±0.000 8 0.01±0.521 9 7.74×10−6±0.005 4 K 3.62×10−7±0.000 5 1.02×10−6±0.003 3 −1.92×10−6±0.000 8 −0.57±0.469 1 −5.02×10−6±0.005 4 M 1.69×10−7±0.000 5 5.22×10−6±0.003 3 4.63×10−7±0.000 8 0.31±0.470 8 −8.55×10−6±0.005 4 表 3 凡纳滨对虾生长和耐综合胁迫性状的SCA效应值
Tab. 3 SCA effect value of growth and comprehensive stress tolerance traits of Litopenaeus vannamei
交配组合 特殊配合力 体质量 体长 头胸甲长 腹节全长 耐综合胁迫 GX♀×GX♂ −0.13±0.17a −0.56±0.96a −0.53±0.24a −0.19±0.37a 3.65±1.79a GX♀×W♂ 0.31±0.22a 1.22±1.22a 0.23±0.30a 0.07±0.39a 1.16±2.09a GX♀×K♂ −0.11±0.21a −0.38±1.14a −0.61±0.29b −0.39±0.39b −1.44±2.02a GX♀×M♂ 0.29±0.29a 2.02±1.60a 0.21±0.36a 0.17±0.4a −0.49±2.43a W♀×GX♂ 0.07±0.20a 0.26±1.09a −0.05±0.27a 0.09±0.38a 1.30±2.03a W♀×W♂ −0.92±0.25b −5.82±1.35b 0.30±0.33a 0.09±0.40a −1.67±2.28a W♀×M♂ 0 0.91±1.60a −0.05±0.36a 0.02±0.4a −1.32±2.44a L♀×L♂ 0.16±0.25a 0.94±1.35a 0.13±0.33a 0.01±0.40a 2.19±2.33a K♀×GX♂ 0.13±0.20a 0.89±1.09a 0.31±0.27a 0.07±0.38a −2.79±2.02b K♀×K♂ 0.35±0.25a 0.89±1.35a 0.11±0.33a 0.08±0.40a 0.02±2.25a K♀×M♂ −0.17±0.29a −0.09±1.60a −0.10±0.36a −0.09±0.4a 0.95±2.44a M♀×M♂ −0.01±0.25a −0.28±1.35a 0.06±0.33a 0.08±0.40a −1.55±2.35a 注:表中不同字母为差异显著(p<0.05),相同字母为差异不显著(p >0.05)。 表 4 凡纳滨对虾生长和耐综合胁迫性状配合力的方差组分
Tab. 4 The variance components of combining ability for growth and comprehensive stress tolerance of Litopenaeus vannamei
方差组分 各性状的方差数值 体质量 体长 头胸甲长 腹节全长 耐综合胁迫 母本 一般配合力方差(${\sigma }_{{\rm{GCA}}}^{2}$) 0.236×10−6 6.58×10−6 0.701×10−6 0.27 4.15 一般配合力方差占表型方差比例(${\sigma }_{{\rm{GCA}}}^{2}$/${\sigma }_{{\rm{P}}}^{2}$ ) 5.00×10−6% 4.98×10−6% 4.98×10−6% 0.43% 0.73% 父本 一般配合力方差(${\sigma }_{{\rm{GCA}}}^{2}$) 2.36×10−7 10.91×10−6 7.01×10−7 0.34 29.00×10−6 一般配合力方差占表型方差比例(${\sigma }_{{\rm{GCA}}}^{2}$/${\sigma }_{{\rm{P}}}^{2}$) 5.00×10−6% 8.25×10−6% 5.06×10−6% 0.54% 5.08×10−6% 特殊配合力方差(${\sigma }_{{\rm{CSA}}}^{2}$) 0.16 5.37 0.18 0.16 8.16 特殊配合力方差占表型方差比例(${\sigma }_{{\rm{CSA}}}^{2}$/${\sigma }_{{\rm{P}}}^{2}$) 3.39% 4.06% 1.30% 0.25% 1.43% 表型方差(${\sigma }_{{\rm{P}}}^{2}$) 4.72 132.22 13.86 63.01 570.50 -
[1] Lu Xia, Luan Sheng, Cao Baoxiang, et al. Estimation of genetic parameters and genotype-by-environment interactions related to acute ammonia stress in Pacific white shrimp (Litopenaeus vannamei) juveniles at two different salinity levels[J]. PLoS One, 2017, 3(12): e0173835. [2] Lü Ding, Yu Yang, Zhang Qian, et al. Estimating genetic parameters for resistance to Vibrio parahaemolyticus with molecular markers in Pacific white shrimp[J]. Aquaculture, 2020, 527: 735439. doi: 10.1016/j.aquaculture.2020.735439 [3] 胡东, 王丽萍, 赵苒, 等. 福建漳浦凡纳滨对虾海水养殖中后期水体细菌群落多样性分析[J]. 海洋学报, 2017, 39(8): 89−98.Hu Dong, Wang Liping, Zhao Ran, et al. The diversity changes of bacterial community in mariculture water of Litopenasus vannamei at Zhangpu, Fujian Province[J]. Haiyang Xuebao, 2017, 39(8): 89−98. [4] 张伟权. 世界重要养殖品种——南美白对虾生物学简介[J]. 海洋科学, 1990, 14(3): 69−73.Zhang Weiquan. An important breeding species in the world—Biology of Litopenaeus vannamei.[J]. Marine Sciences, 1990, 14(3): 69−73. [5] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021年中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021.Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Station, China Fisheries Association. 2021 China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, 2021. [6] Funge-Smith S, Briggs M. The introduction of Penaeus vannamei and P. stylirostris into the Asia-Pacific region[C]// International Mechanisms for the Control and Responsible use of Alien Species in Aquatic Ecosystems, Report of an Ad Hoc Expert Consultation. Rome, Italy: FAO, 2005. [7] Lu Xia, Luan Sheng, Luo Kun, et al. Genetic analysis of the Pacific white shrimp (Litopenaeus vannamei): heterosis and heritability for harvest body weight[J]. Aquaculture Research, 2015, 47(11): 3365−3375. [8] De Donato M, Manrique R, Ramirez R, et al. Mass selection and inbreeding effects on a cultivated strain of Penaeus (Litopenaeus) vannamei in Venezuela[J]. Aquaculture, 2005, 247(1/4): 159−167. [9] Maluwa A O, Gjerde B. Genetic evaluation of four strains of Oreochromis shiranus for harvest body weight in a diallel cross[J]. Aquaculture, 2006, 259(1/4): 28−37. [10] 孔杰, 栾生, 谭建, 等. 对虾选择育种研究进展[J]. 中国海洋大学学报, 2020, 50(9): 81−97.Kong Jie, Luan Sheng, Tan Jian, et al. Progress of study on penaeid shrimp selective breeding[J]. Periodical of Ocean University of China, 2020, 50(9): 81−97. [11] 熊大林, 段亚飞, 徐敬明, 等. 凡纳滨对虾鳃组织对高温和氨氮胁迫的生理响应[J]. 南方农业学报, 2020, 51(9): 2296−2303. doi: 10.3969/j.issn.2095-1191.2020.09.031Xiong Dalin, Duan Yafei, Xu Jingming, et al. Physiological responses in gills of Litopenaeus vannamei exposed to the combined stress of temperature and ammonia[J]. Journal of Southern Agriculture, 2020, 51(9): 2296−2303. doi: 10.3969/j.issn.2095-1191.2020.09.031 [12] 戴习林, 杨展昆, 朱其建. 凡纳滨对虾室内养殖密度和简易水质调控措施对水质及养殖效果的影响[J]. 上海海洋大学学报, 2018, 27(6): 894−906.Dai Xilin, Yang Zhankun, Zhu Qijian. Effects of indoor aquaculture density and simple water quality control measures on water quality and culture efficiency of Litopenaeus vannamei[J]. Journal of Shanghai Ocean University, 2018, 27(6): 894−906. [13] Chen J C, Liu P C, Lin Y T, et al. Super intensive culture of red-tailed shrimp Penaeus penicillatus[J]. Journal of the World Aquaculture Society, 1988, 19(3): 127−131. doi: 10.1111/j.1749-7345.1988.tb00940.x [14] Haines T A. Acidic precipitation and its consequences for aquatic ecosystems: a review[J]. Transactions of the American Fisheries Society, 1981, 110(6): 669−707. doi: 10.1577/1548-8659(1981)110<669:APAICF>2.0.CO;2 [15] Colombani N, Giambastiani B M S, Mastrocicco M. Impact of climate variability on the salinization of the coastal wetland-aquifer system of the Po Delta, Italy[J]. Journal of Water Supply Research and Technology-Aqua, 2017, 66(7): 430−441. [16] Cui Yangting, Ren Xianyun, Li Jian, et al. Effects of ammonia-N stress on metabolic and immune function via the neuroendocrine system in Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2017, 64: 270−275. [17] Yu Qiuran, Xie Jia, Huang Maoxian, et al. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei[J]. Aquaculture Reports, 2020, 16: 100280. doi: 10.1016/j.aqrep.2020.100280 [18] 赵玉超, 王仁杰, 沈敏, 等. 高盐对凡纳滨对虾仔虾生长、渗透调节及免疫相关酶活性的影响[J]. 水产学报, 2019, 43(4): 833−840.Zhao Yuchao, Wang Renjie, Shen Min, et al. Effects of high-salt stress on daily weight gain, osmoregulation and immune related enzyme activities in Litopenaeus vannamei postlarvae[J]. Journal of Fisheries of China, 2019, 43(4): 833−840. [19] Hedgecock D, Davis J P. Heterosis for yield and crossbreeding of the Pacific oyster Crassostrea gigas[J]. Aquaculture, 2007, 272(S1): S17−S29. [20] 王浩, 罗坤, 栾生, 等. 凡纳滨对虾多个引进群体的杂交配合力分析[J]. 水产学报, 2013, 37(4): 489−495. doi: 10.3724/SP.J.1231.2013.38339Wang Hao, Luo Kun, Luan Sheng, et al. Combining ability of hybrid generation from the introduced populations of Litopenaeus vannamei[J]. Journal of Fisheries of China, 2013, 37(4): 489−495. doi: 10.3724/SP.J.1231.2013.38339 [21] 胡志国, 刘建勇, 袁瑞鹏, 等. 3个凡纳滨对虾引进群体对温度和盐度耐受力的配合力分析[J]. 海洋科学, 2016, 40(1): 25−31. doi: 10.11759/hykx20141009003Hu Zhiguo, Liu Jianyong, Yuan Ruipeng, et al. Analysis of combining ability of survival of imported Litopenaeus vannamei populations under temperature and salinity stress[J]. Marine Sciences, 2016, 40(1): 25−31. doi: 10.11759/hykx20141009003 [22] 胡志国, 刘建勇, 袁瑞鹏, 等. 凡纳滨对虾高氨氮和低溶氧抗逆性状的杂交配合力分析[J]. 南方水产科学, 2016, 12(1): 43−49. doi: 10.3969/j.issn.2095-0780.2016.01.007Hu Zhiguo, Liu Jianyong, Yuan Ruipeng, et al. Combining ability for resistance of Litopenaeus vannamei to ammonia nitrogen and dissolved oxygen[J]. South China Fisheries Science, 2016, 12(1): 43−49. doi: 10.3969/j.issn.2095-0780.2016.01.007 [23] 袁瑞鹏, 刘建勇, 张嘉晨, 等. 凡纳滨对虾群体杂交与自交 F1低溶氧与高氨氮耐受性比较[J]. 中国水产科学, 2015, 22(3): 410−417.Yuan Ruipeng, Liu Jianyong, Zhang Jiachen, et al. A comparative study of hypoxia and high-ammonia resistance between Litopenaeus vannamei inbred and hybrid offspring at different stages[J]. Journal of Fishery Sciences of China, 2015, 22(3): 410−417. [24] 袁瑞鹏. 凡纳滨对虾生长、繁殖及高氨氮耐受性的选择育种研究[D]. 湛江: 广东海洋大学, 2016.Yuan Ruipeng. The selective breeding research on the growth, reproduction and high ammonia nitrogen tolerance in Litopenaeus vannamei[D]. Zhanjiang: Guangdong Ocean University, 2016. [25] Duan Yaifei, Wang Yun, Liu Qingsong, et al. Changes in the intestine barrier function of Litopenaeus vannamei in response to pH stress[J]. Fish & Shellfish Immunology, 2019, 88: 142−149. [26] 盛志廉, 陈瑶生. 数量遗传学[M]. 北京: 科学出版社, 1999.Sheng Zhilian, Chen Yaosheng. Quantitative Genetics[M]. Beijing: Science Press, 1999. [27] 张天时. 中国对虾(Fenneropenaeus chinensis)育种的模型分析与遗传参数评估[D]. 青岛: 中国海洋大学, 2010.Zhang Tianshi. Analysis of animal models and estimation genetic parameters in Fenneropenaeus chinensis breeding[D]. Qingdao: Ocean University of China, 2010. [28] 李永, 黄建华, 杨其彬, 等. 斑节对虾2个地理种群自交与杂交F1的生长性能[J]. 中国水产科学, 2012, 19(5): 784−789.Li Yong, Huang Jianhua, Yang Qibin, et al. Growth performance of inbred and hybrid F1s created from the cross of two geographic Penaeus monodon populations[J]. Journal of Fishery Sciences of China, 2012, 19(5): 784−789. [29] 阮晓红, 罗坤, 栾生, 等. 凡纳滨对虾7个引进群体的生长性能评估[J]. 水产学报, 2013, 37(1): 34−42. doi: 10.3724/SP.J.1231.2013.38268Ruan Xiaohong, Luo Kun, Luan Sheng, et al. Evaluation of growth performance in Litopenaeus vannamei populations introduced from other nations[J]. Journal of Fisheries of China, 2013, 37(1): 34−42. doi: 10.3724/SP.J.1231.2013.38268 [30] Butler D G, Cullis B R, Gilmour A R, et al. ASReml-R Reference Manual Version 4[M]. UK: VSN International Ltd, 2017. [31] 唐燕琼. Griffing双列杂交育种配合力统计分析的SAS实施研究——试验模型Ⅱ单变元分析[D]. 海口: 华南热带农业大学, 2002.Tang Yanqiong. SAS Programs of univariate combining ability analysis of Griffing’s diallel—cross design for method 2[D]. Haikou: South China University of Tropical Agriculture, 2002. [32] 胡志国, 刘建勇, 包秀凤, 等. 九孔鲍双列杂交家系子代的杂种优势与配合力分析[J]. 南方水产科学, 2014, 10(1): 43−49. doi: 10.3969/j.issn.2095-0780.2014.01.007Hu Zhiguo, Liu Jianyong, Bao Xiufeng, et al. Combining ability and heterosis of hybridization between cultured and wild stocks of Haliotis diversicolor supertexta[J]. South China Fisheries Science, 2014, 10(1): 43−49. doi: 10.3969/j.issn.2095-0780.2014.01.007 [33] Costa A C, Botelho H A, Da Silva Gomes R C, et al. General and specific combining ability in Serrasalmidae[J]. Aquaculture Research, 2019, 50(3): 717−724. [34] 周发林, 杨其彬, 姜松, 等. 斑节对虾3个种质群体体质量性状配合力及杂种优势分析[J]. 南方水产科学, 2021, 17(1): 39−44. doi: 10.12131/20200157Zhou Falin, Yang Qibin, Jiang Song, et al. Analysis of combining ability and heterosis on body mass trait of three Penaeus monodon populations[J]. South China Fisheries Science, 2021, 17(1): 39−44. doi: 10.12131/20200157 [35] 潘清洁. 5个新选水稻三系不育系主要农艺性状配合力分析及评价[D]. 贵阳: 贵州大学, 2020.Pan Qingjie. Analysis of combining ability and evaluation of major agronomic characters in five new rice three-line CMS line[D]. Guiyang: Guizhou University, 2020. [36] 张升祥. 家蚕对颗粒饲料摄食性选择方法与育种研究[D]. 泰安: 山东农业大学, 2003.Zhang Shengxiang. Selection method and breeding of silkworm (Bombyx mori L. ) for feeding ability on pellet artificial diet[D]. Tai’an: Shandong Agricultural University, 2003. [37] Hayman B I. Interaction, heterosis and diallel crosses[J]. Genetics, 1957, 42(3): 336−355. doi: 10.1093/genetics/42.3.336 [38] Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems[J]. Australian Journal of Biological Sciences, 1956, 9(4): 463−493. doi: 10.1071/BI9560463 [39] 马爱军, 王新安, 黄智慧, 等. 大菱鲆(Scophthalmus maximus)快速生长品系和高成活率选育品系的配合力分析[J]. 海洋与湖沼, 2017, 48(5): 1100−1107. doi: 10.11693/hyhz20170600177Ma Aijun, Wang Xin’an, Huang Zhihui, et al. Combining ability of selected fast-growing and high survival strain of turbot Scophthalmus maximus[J]. Oceanologia et Limnologia Sinica, 2017, 48(5): 1100−1107. doi: 10.11693/hyhz20170600177 [40] 林明雪, 杨洁, 岳武成, 等. “吉富”系列罗非鱼生长性状的配合力、杂种优势与遗传相关分析[J]. 南方水产科学, 2016, 12(2): 1−6. doi: 10.3969/j.issn.2095-0780.2016.02.001Lin Mingxue, Yang Jie, Yue Wucheng, et al. Analysis of combining ability, heterosis and genetic correlation on growth traits of GIFT tilapia[J]. South China Fisheries Science, 2016, 12(2): 1−6. doi: 10.3969/j.issn.2095-0780.2016.02.001 [41] 张存善, 李色东, 王亚平, 等. 2个凡纳滨对虾群体仔虾的生长比较[J]. 水产科学, 2010, 29(6): 325−328. doi: 10.3969/j.issn.1003-1111.2010.06.004Zhang Cunshan, Li Sedong, Wang Yaping, et al. Comparison of growth between two populations of pacific white leg shrimp Litopenaeus vannamei[J]. Fisheries Science, 2010, 29(6): 325−328. doi: 10.3969/j.issn.1003-1111.2010.06.004 [42] 姚雪梅, 黄勃, 张继涛, 等. SPF凡纳滨对虾F1、F2及杂交代生长和存活比较研究[J]. 中国水产科学, 2007, 14(2): 326−330. doi: 10.3321/j.issn:1005-8737.2007.02.023Yao Xuemei, Huang Bo, Zhang Jitao, et al. Comparison of growth and survival rate of F1, F2 and hybrid generation from SPF Litopenaeus vannamei[J]. Journal of Fishery Sciences of China, 2007, 14(2): 326−330. doi: 10.3321/j.issn:1005-8737.2007.02.023 [43] 田燚, 孔杰, 杨翠华, 等. 中国明对虾2个群体的杂交子一代早期分析[J]. 海洋学报, 2007, 29(3): 157−161.Tian Yi, Kong Jie, Yang Cuihua, et al. Study on hybridization of two different populations of Fenneropenaeus chinensis[J]. Haiyang Xuebao, 2007, 29(3): 157−161. [44] World Fish Center. Genetic improvement of carp species in Asia[R]. ICLARM Final Report, 2001: 159.