留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广东省14个海滩裂流类型及统计特征分析

胡鹏鹏 李志强 朱道恒 苏倩欣 李高聪

胡鹏鹏,李志强,朱道恒,等. 广东省14个海滩裂流类型及统计特征分析[J]. 海洋学报,2022,44(6):140–149 doi: 10.12284/hyxb2022037
引用本文: 胡鹏鹏,李志强,朱道恒,等. 广东省14个海滩裂流类型及统计特征分析[J]. 海洋学报,2022,44(6):140–149 doi: 10.12284/hyxb2022037
Hu Pengpeng,Li Zhiqiang,Zhu Daoheng, et al. Types and statistical analysis of rip currents at 14 beaches in the Guangdong Province[J]. Haiyang Xuebao,2022, 44(6):140–149 doi: 10.12284/hyxb2022037
Citation: Hu Pengpeng,Li Zhiqiang,Zhu Daoheng, et al. Types and statistical analysis of rip currents at 14 beaches in the Guangdong Province[J]. Haiyang Xuebao,2022, 44(6):140–149 doi: 10.12284/hyxb2022037

广东省14个海滩裂流类型及统计特征分析

doi: 10.12284/hyxb2022037
基金项目: 国家自然科学基金(42176167,41676079); 广东海洋大学创新强校工程项目(Q18307);广东海洋大学科研启动经费项目(060302112010)。
详细信息
    作者简介:

    胡鹏鹏(1998-),男,江西省南昌市人,主要从事海岸水动力及裂流研究。E-mail:pphu122@163.com

    通讯作者:

    李志强(1974-),男,湖南省郴州市人,博士,教授,主要从事海岸资源与环境研究。E-mail:qiangzl1974@163.com

  • 中图分类号: P731.21

Types and statistical analysis of rip currents at 14 beaches in the Guangdong Province

  • 摘要: 裂流是沿海地区频发的一种高速离岸流。根据Castelle的裂流分类模型对广东省14个海滩的Google Earth影像进行了解译分类,对裂流分类模型在遥感影像中的应用进行了探讨。结果表明:在高风险月份,海滩裂流的组成较为单一,混合型裂流少,水深控制的裂流占据主导地位,裂流数量总体维持在较高水平;在中风险月份,水动力控制的裂流和混合型裂流的比例增加,水深控制的裂流仍然占有一定比例;在低风险月份,裂流很少出现,甚至无裂流发生。裂流的类型与海滩的状态密切相关。对于海湾中的海滩,海湾长度影响裂流的数量,海湾凹入度影响不同类型裂流的组成比例。考虑到实验条件的限制,这一规律需要后续结合实际地形地貌进行更细致和深入的研究和验证。按照本文解译标准得出的分类结果,与前人提出的裂流风险性评价模型吻合度较高,进一步说明了该解译标准的有效性,为今后对海滩裂流的研究和分类工作提供了一定的参考。
  • 图  1  裂流分类框架图(修改自文献[25])

    Fig.  1  Rip current classification framework (modified from the reference [25])

    图  2  各类型裂流的特征影像

    a.剪切不稳定裂流;b.瞬变裂流;c.沟槽裂流;d.聚焦型裂流;e.偏斜裂流;f.阴影区裂流;g.沟槽–瞬变裂流;h.聚焦型–沟槽裂流;i.边界–沟槽裂流;j.岬湾单元裂流;k.冲流带裂流

    Fig.  2  Interpreting signs of various types of rip currents

    a. Shear instability rips; b. flash rips; c. channel rip currents; d. focused rips; e. deflection rips; f. shadow rips; g. channel-flash rips; h. focus-channel rips; i. boundary-channel rips; j. embayed-cellular rips; k. swash rips

    图  3  14个海滩的位置示意图

    平海东、平海西分别是指广东省惠州市平海镇东侧和西侧海湾

    Fig.  3  Location diagram of the 14 beaches

    Pinghai East and Pinghai West refer to the bay on the east and west of Pinghai Town, Huizhou City, Guangdong Province respectively

    图  4  广澳湾裂流逐月分类统计

    Fig.  4  Monthly classification statistics of rip currents in the Guang ’ao Bay

    图  5  东海岛裂流逐月分类统计

    Fig.  5  Monthly classification statistics of rip currents in the Donghai Island

    图  6  月亮湾裂流逐月分类统计

    Fig.  6  Monthly classification statistics of rip currents in the Moon Bay

    图  7  14个海滩的裂流类型结构

    Fig.  7  Rip current type structure of 14 beaches

    图  8  14个海滩的海滩长度和年平均裂流数

    Fig.  8  Beach length and annual mean number of rip currents of the 14 beaches

    图  9  岬角海湾的海湾长度和年平均裂流数

    Fig.  9  Bay length and annual mean number of rip currents of the headland bay

    图  10  岬角海湾的裂流类型比例和海湾凹入度

    Fig.  10  Rip current types propotion and bay concave degree of the headland bay

    表  1  Castelle裂流分类类型表

    Tab.  1  Castelle’s rip current classification types

    类型种类
    水动力学控制的裂流剪切不稳定裂流
    瞬变裂流
    水深控制的裂流沟槽裂流
    聚焦型裂流
    边界控制的裂流偏斜裂流
    阴影区裂流
    混合型裂流沟槽−瞬变裂流
    聚焦型−沟槽裂流
    边界−沟槽裂流
    岬湾单元裂流
    下载: 导出CSV

    表  2  影像各类型裂流解译判释表

    Tab.  2  Interpretation of various types of rip currents in images

    种类解译标准
    剪切不稳定裂流位于沿岸均匀的开阔海滩,波浪高度倾斜入射,形成离岸的裂流头和狭窄的裂流颈,或物质离岸输移使颜色变深
    瞬变裂流位于沿岸均匀的开阔海滩,波浪近垂直入射,形成离岸的裂流头和狭窄的裂流颈,或物质离岸输移使颜色变深
    沟槽裂流沟槽切割沙坝或阶地并在开阔海滩上规律性地呈现;沟槽两侧波浪破碎形成白沫,影像上表现为白色
    聚焦型裂流入射波峰线由海向岸逐渐弯曲成韵律状,沿岸有白沫规律性凸起,在凸起附近有物质离岸输移使颜色变深
    偏斜裂流波浪从刚性边界迎风面入射,物质离岸输移使颜色变深
    阴影区裂流波浪从刚性边界背风面入射,在边界处白沫断裂
    沟槽–瞬变裂流波浪近垂直入射,沟槽宽度很小,在沟槽附近有细小的离岸白沫
    聚焦型–沟槽裂流有两层白沫(双沙坝),外侧白沫相对不明显,内沙坝沟槽切割程度较深,沟槽宽度很大且呈现规律性分布
    边界–沟槽裂流位于刚性边界附近,有沟槽,沟槽两侧有白沫
    岬湾单元裂流海湾凹入度小于冲浪区宽度,海湾内白沫非常明显,在海岬两侧或中心有离岸白沫
    冲流带裂流有规律地形成在滩角处,呈细条状的白沫
    下载: 导出CSV

    表  3  基于地形动力指标的滨海旅游海滩裂流风险等级表

    Tab.  3  Beach characteristics and rip risk level based on morphodynamic values

    海滩组别泥沙沉降参数相对潮差海滩类型裂流风险
    反射组Ω<2RTR<3完全反射型(R)
    RTR >7低潮台地型(LTT)
    3LRTR≤7低潮台地裂流型(LTTR)
    中间状态型2≤Ω≤5RTR <3沿岸沙坝型(B)
    3BRTR≤7低潮冲流沙坝裂流型(LTBR)
    消散型Ω>5RTR <3沙坝消散型(BD)
    3BRTR≤7无沙坝消散型(NBD)
    超消散型Ω>2RTR >7平缓超消散型(UD)
    下载: 导出CSV

    表  4  14个海滩的影像统计

    Tab.  4  Image statistics of 14 beaches

    沙滩名称图像数/景无法识别/景无裂流/景有裂流/景
    青澳湾11137
    广澳湾282026
    海门湾261124
    红海湾东120111
    平海东264220
    平海西232318
    西涌海滩212415
    小梅沙221147
    大梅沙271147
    十里银滩6024
    大角湾7115
    月亮湾4004
    水东湾131012
    东海岛231616
    合计2491751176
      注:由于云量或光线等原因会造成某些影像无法识别。
    下载: 导出CSV

    表  5  实际影像数量和有效影像数量

    Tab.  5  Actual image number and effective image number

    海滩名称实际影像数量/景有效影像数量/景
    青澳湾109.47
    广澳湾2621.18
    海门湾2618.56
    红海湾东1212
    平海东2214.07
    平海西2116.7
    西涌海滩1918.43
    小梅沙2222
    大梅沙2625
    十里银滩64.59
    大角湾65.11
    月亮湾43.33
    水东湾129.9
    东海岛2210.47
    下载: 导出CSV
  • [1] 孟凡昌, 李本霞. 裂流的研究综述[J]. 海洋预报, 2017, 34(1): 82−89. doi: 10.11737/j.issn.1003-0239.2017.01.011

    Meng Fanchang, Li Benxia. Review on the study of the rip current[J]. Marine Forecasts, 2017, 34(1): 82−89. doi: 10.11737/j.issn.1003-0239.2017.01.011
    [2] Reimnitz E, Toimil L J, Shepard F P, et al. Possible rip current origin for bottom ripple zones, to 30-m depth[J]. Geology, 1976, 4(7): 395−400. doi: 10.1130/0091-7613(1976)4<395:PRCOFB>2.0.CO;2
    [3] Short A D. Rip-current type, spacing and persistence, Narrabeen Beach, Australia[J]. Marine Geology, 1985, 65(1/2): 47−71.
    [4] Li Zhiqiang. Rip current hazards in South China headland beaches[J]. Ocean & Coastal Management, 2016, 121: 23−32.
    [5] 陆旭, 张弛, 时健, 等. 我国海滩游客安全事故数据库和事故特征分析[J]. 海洋开发与管理, 2021, 38(6): 3−11. doi: 10.3969/j.issn.1005-9857.2021.06.001

    Lu Xu, Zhang Chi, Shi Jian, et al. Tourists accident database and accident characteristics of beach tourism in China[J]. Ocean Development and Management, 2021, 38(6): 3−11. doi: 10.3969/j.issn.1005-9857.2021.06.001
    [6] Alvarez-Ellacuria A, Orfila A, Olabarrieta M, et al. A nearshore wave and current operational forecasting system[J]. Journal of Coastal Research, 2010(263): 503−509.
    [7] Austin M, Scott T, Brown J, et al. Temporal observations of rip current circulation on a macro-tidal beach[J]. Continental Shelf Research, 2010, 30(9): 1149−1165. doi: 10.1016/j.csr.2010.03.005
    [8] Chen Qin, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of wave transformation, breaking, and runup. II: 2D[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(1): 48−56. doi: 10.1061/(ASCE)0733-950X(2000)126:1(48)
    [9] Kim I C, Lee J L, Lee J Y. Verification of rip current simulation using a two-dimensional predictive model, HAECUM[J]. Journal of Coastal Research, 2013, 65(sp1): 726−730.
    [10] 张尧, 刘旭楠, 董肇伟, 等. 我国典型滨海旅游区裂流灾害评估调查及风险管理动态[J]. 海洋开发与管理, 2018, 35(7): 16−25. doi: 10.3969/j.issn.1005-9857.2018.07.003

    Zhang Yao, Liu Xunan, Dong Zhaowei, et al. Technical assessment and public warning of the rip current for China's typical coastal tourism[J]. Ocean Development and Management, 2018, 35(7): 16−25. doi: 10.3969/j.issn.1005-9857.2018.07.003
    [11] Lin H, Hwang I, Shen S. The changes at long time scale on the beach type and rip current of the Fulong Beach in the north coast of Taiwan[J]. Journal of Geography Research, 2009, 50: 47−65.
    [12] Lin H, Hwang I, Shen S. The short-term change on the beach type and rip current of the Fulong Beach in the north coast of Taiwan[J]. Journal of Geographical Science, 2011, 61: 57−80.
    [13] Maryan C, Hoque T, Michael C, et al. Machine learning applications in detecting rip channels from images[J]. Applied Soft Computing, 2019, 78: 84−93. doi: 10.1016/j.asoc.2019.02.017
    [14] De Silva A, Mori I, Dusek G, et al. Automated rip current detection with region based convolutional neural networks[J]. Coastal Engineering, 2021, 166: 103859. doi: 10.1016/j.coastaleng.2021.103859
    [15] Shepard F P. Undertow, rip tide or “rip current”[J]. Science, 1936, 84(2173): 181−182. doi: 10.1126/science.84.2173.181
    [16] Long J W, Özkan-Haller H T. Offshore controls on nearshore rip currents[J]. Journal of Geophysical Research:Oceans, 2005, 110(C12): C12007. doi: 10.1029/2005JC003018
    [17] Dalrymple R A. Rip currents and their causes[C]//16th International Conference on Coastal Engineering. Hamburg, Germany: American Society of Civil Engineers, 1978: 1414−1427.
    [18] Shepard F P, Emery K O, La Fond E C. Rip currents: a process of geological importance[J]. The Journal of Geology, 1941, 49(4): 337−369. doi: 10.1086/624971
    [19] Shepard F P, Inman D L. Nearshore circulation[R]. Scripps Institution of Oceanography La Jolla Calif, 1951.
    [20] Short A D, Brander R W. Regional variations in rip density[J]. Journal of Coastal Research, 1999, 15(3): 813−822.
    [21] Short A D. Australian rip systems-friend or foe?[J]. Journal of Coastal Research, 2007, SI 50: 7−11.
    [22] Wright L D, Cowell P J, Coffey F C. Nearshore Oceanography and Morphodynamics of the Broken Bay-Palm Beach Region, N. S. W. : Implications for Offshore Dredging[M]. Coastal Studies Unit, Department of Geography, University of Sydney, 1980.
    [23] Wind H G, Vreugdenhil C B. Rip-current generation near structures[J]. Journal of Fluid Mechanics, 1986, 171: 459−476. doi: 10.1017/S0022112086001520
    [24] Dalrymple R A, MacMahan J H, Reniers A J H M, et al. Rip currents[J]. Annual Review of Fluid Mechanics, 2011, 43: 551−581. doi: 10.1146/annurev-fluid-122109-160733
    [25] Castelle B, Scott T, Brander R W, et al. Rip current types, circulation and hazard[J]. Earth-Science Reviews, 2016, 163: 1−21. doi: 10.1016/j.earscirev.2016.09.008
    [26] Wright L D, Short A D, Green M O. Short-term changes in the morphodynamic states of beaches and surf zones: an empirical predictive model[J]. Marine Geology, 1985, 62(3/4): 339−364.
    [27] Masselink G, Short A D. The effect of tide range on beach morphodynamics and morphology: a conceptual beach model[J]. Journal of Coastal Research, 1993, 9(3): 785−800.
    [28] 李志强. 基于地形动力学的华南海滩裂流风险研究[J]. 热带海洋学报, 2015, 34(1): 8−14. doi: 10.3969/j.issn.1009-5470.2015.01.002

    Li Zhiqiang. Study on the rip current hazard of South China beaches based on beach morphodynamics[J]. Journal of Tropical Oceanography, 2015, 34(1): 8−14. doi: 10.3969/j.issn.1009-5470.2015.01.002
    [29] 李志强, 朱雅敏. 基于地形动力学的海滩裂流安全性评价——以三亚大东海为例[J]. 热带地理, 2015, 35(1): 96−102.

    Li Zhiqiang, Zhu Yamin. Beach safety evaluation based on rip current morphodynamic: a case study of Dadonghai of Sanya, China[J]. Tropical Geography, 2015, 35(1): 96−102.
    [30] 李志强, 陈杏文. 湛江东海岛裂流风险评价[J]. 海洋开发与管理, 2016, 33(S2): 73−78.

    Li Zhiqiang, Chen Xingwen. Rip Current risk at the beach of Donghai Island, Zhanjiang, China[J]. Ocean Development and Management, 2016, 33(S2): 73−78.
    [31] 张尧, 刘旭楠, 刘强, 等. 华南休闲海滩沙坝触发的裂流风险及特征研究[J]. 海洋学报, 2020, 42(9): 9−21.

    Zhang Yao, Liu Xunan, Liu Qiang, et al. Study on the risk and characteristics of rip currents over sandbars at South China’ s recreational beaches[J]. Haiyang Xuebao, 2020, 42(9): 9−21.
    [32] 广东省裂流排查工作小组. 广东省重点滨海旅游区裂流灾害风险排查报告[R]. 广州: 国家海洋局南海预报中心, 2018.

    Guangdong Provincial Working Group for Rip Current Investigation. Risk investigation report of rip current disaster in key coastal tourism areas of Guangdong Province[R]. Guangzhou: South China Sea Marine Prediction Center, State Oceanic Administration, 2018.
    [33] Wright L D, Short A D. Morphodynamic variability of surf zones and beaches: a synthesis[J]. Marine Geology, 1984, 56(1/4): 93−118.
    [34] Brander R, Scott T. Science of the rip current hazard[M]//Tipton M, Wooler A. The Science of Beach Lifeguarding. Boca Raton: CRC Press, 2016: 67−85.
    [35] Arozarena I, Houser C, Echeverria A G, et al. The rip current hazard in Costa Rica[J]. Natural Hazards, 2015, 77(2): 753−768. doi: 10.1007/s11069-015-1626-9
    [36] Brighton B, Sherker S, Brander R, et al. Rip current related drowning deaths and rescues in Australia 2004–2011[J]. Natural Hazards and Earth System Sciences, 2013, 13(4): 1069−1075. doi: 10.5194/nhess-13-1069-2013
    [37] Gensini V A, Ashley W S. An examination of rip current fatalities in the United States[J]. Natural Hazards, 2010, 54(1): 159−175. doi: 10.1007/s11069-009-9458-0
    [38] Gallop S L, Woodward E, Brander R W, et al. Perceptions of rip current myths from the central south coast of England[J]. Ocean & Coastal Management, 2016, 119: 14−20.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  87
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 录用日期:  2022-02-11
  • 修回日期:  2021-09-28
  • 刊出日期:  2022-07-13

目录

    /

    返回文章
    返回