Characteristics of the sea level in the Arctic Ocean based on observation data from 2003 to 2014
-
摘要: 本文对比了3个不同机构提供的北冰洋月均高度计数据,发现英国极地观测与建模中心和丹麦科技大学空间中心两套数据比较一致且空间覆盖率高,适用于北冰洋海平面变化研究,而前者在数据分辨率、平滑性和与验潮站的符合程度方面均更优。对高度计和验潮站数据的分析表明,北冰洋海平面的气候态特征表现为加拿大海盆的高值和欧亚海盆的低值之间形成鲜明对比;海平面的变化以季节变化和北极涛动引起的低频变化为主,加拿大海盆的季节和年际振幅均较大,俄罗斯沿岸海平面季节变化显著。2003−2014年,北冰洋平均海平面呈上升趋势,其中加拿大海盆海平面上升最快,而俄罗斯沿岸海平面有微弱下降趋势。加拿大海盆和俄罗斯沿岸由于海冰变化显著,不同高度计产品以及高度计与验潮站数据之间差别较大,使用时需慎重。Abstract: Three monthly altimeter datasets of the Arctic Ocean are compared in this paper. The datasets provided by the Centre for Polar Observation and Modelling (CPOM) and Technical University of Denmark (DTU) are found to be consistent with each other and due to their high spapce coverage, are more suitable for the study of the sea level variation in the Arctic Ocean, the former is better in terms of spatial resolution, smoothness, and consistency with the tide gauge observation. Based on the data of both altimeter and tide gauge, the temporal and spatial characteristics of sea level in the Arctic Ocean are analyzed and the results show that the climatological sea level in the Arctic Ocean is represented by the striking contrast between the high values in the Canadian Basin and low values in the Eurasian basin. The variation of sea level in the Arctic Ocean is dominated by the seasonal variability and low-frequency variability associated with the Arctic Oscillation, large amplitudes of both the seasonal and inter-annual sea level variability are found in the Canadian Basin, and large seasonal variability occurs along the coast of Russia. During the period 2003−2014, the mean sea level of the Arctic Ocean is rising with the largest rising rate is found in the Canadian Basin, while the sea level in the Russian coastal area is declining slightly. It is also found that large uncertainty exists in the altimetry products of the Canadian Basin and the coast of Russia, as the difference both between altimetry products and between altimeter and tide gauge data cannot be ignored, data in these areas should be used with caution.
-
Key words:
- Arctic Ocean /
- sea level /
- seasonal variability /
- low-frequency variability /
- Arctic Oscillation
-
图 3 北冰洋2003−2014年平均海面高度空间分布(Armitage(a)、DTU(b)、Copernicus(c))及Armitag与DTU海面高度距平数据差异(d)
Fig. 3 Spatial distribution of the mean sea surface height for the period 2003–2014 in the Arctic Ocean (Armitage (a), DTU (b), Copernicus (c)) and the difference of sea surface height anomaly between Armitage and DTU datasets (d)
图 10 北冰洋区域划分及区域年均海面高度时间序列
a. 区域划分;b. 北冰洋平均海面高度与夏季海冰面积;c. 波弗特海区;d. 俄罗斯沿岸区;e. 北欧海区
Fig. 10 Regional division of the Arctic Ocean and time series of regional annual-mean sea surface height
a. Regional division; b. mean sea surface height and summer sea ice area of the Arctic Ocean; c. Beaufort Sea; d. Russian coastal area; e. Nordic sea area
表 1 高度计与验潮站月均海面高度距平数据的比较
Tab. 1 Comparison of monthly sea surface height anomaly from altimeter and tide gauges
站位名称 站位序号 位置 观测年数 距离/km
(Armitage)斜率
(Armitage)标准差/cm
(Armitage)相关系数
(Armitage)距离/km
(DTU)斜率
(DTU)标准差/cm
(DTU)相关系数
(DTU)SANNIKOVA 602 74.7°N, 138.9°E 11 17 0.31 12.01 0.35(0.01) 11 0.17 8.29 0.27(0.10) PEVEK 606 69.7°N, 170.3°E 10 78 0.30 9.88 0.48(0.01) 89 0.22 8.16 0.42(0.01) DUNAI 640 73.9°N, 124.5°E 8 83 0.15 7.15 0.38(0.01) 111 0.08 6.24 0.22(0.03) KOTELNYI 641 76.0°N, 137.9°E 11 72 0.28 8.36 0.40(0.01) 100 0.17 5.82 0.35(0.01) KIGILIAH 642 73.3°N, 140.0°E 11 111 0.65 12.93 0.66(0.01) 111 0.31 8.29 0.50(0.01) 拉普捷夫海和东西伯利亚海 10 72 0.34 10.07 0.45 84 0.19 7.36 0.35 AMDERMA 599 69.8°N, 61.7°E 11 22 0.40 8.39 0.59(0.01) 133 0.25 5.88 0.54(0.01) UST 600 69.3°N, 64.5°E 11 83 0.17 10.09 0.24(0.01) 111 0.17 6.47 0.38(0.01) STERLEGOVA 612 75.4°N, 88.9°E 10 122 0.26 9.63 0.44(0.01) 100 0.15 9.46 0.27(0.01) IZVESTIA 728 76.0°N, 83.0°E 11 27 0.37 8.28 0.53(0.01) 0 0.26 7.62 0.41(0.01) GOLOMIANYI 729 79.6°N, 90.6°E 8 16 0.21 4.84 0.32(0.01) 122 0.24 6.71 0.26(0.01) 喀拉海 11 54 0.28 8.25 0.42 93 0.21 7.23 0.37 VARDO 524 70.4°N, 31.1°E 12 122 0.44 5.34 0.63(0.01) 122 0.54 6.18 0.67(0.01) HAMMERFEST 758 70.7°N, 23.7°E 12 50 0.43 5.33 0.65(0.01) 133 0.56 6.94 0.64(0.01) HONNINGSVAG 1267 71.0°N, 26.0°E 12 111 0.42 5.08 0.63(0.01) 0 0.57 6.74 0.64(0.01) 巴伦支海 12 94 0.43 5.25 0.64 85 0.56 6.62 0.65 TUKTOYAKTUK 1000 69.4°N, 227.0°E 12 111 0.31 6.95 0.62(0.01) 56 0.17 8.81 0.27(0.01) ALASKA 1857 70.4°N, 211.5°E 12 167 0.29 5.04 0.63(0.01) 111 0.16 7.70 0.23(0.01) 波弗特海 12 139 0.30 6.00 0.63 84 0.17 8.26 0.25 注:对于每个验潮站,表中显示了站点的名称、序号、位置、2003−2014年的资料重叠年数、高度计网格点与验潮站位置之间的距离、高度计和验潮站月均数据散点图的线性拟合斜率、高度计数据与线性拟合值的残差标准差以及高度计与验潮站时间序列的相关系数,相关系数括号内数值表示显著性水平。拉普捷夫海和东西伯利亚海、喀拉海、巴伦支海、波弗特海的平均值均以加粗显示。 A1 北冰洋沿岸验潮站的主要信息
A1 Main information of tide gauges along the Arctic Ocean
序号 站名 站位号 纬度 经度 所属国家 观测年数 1 KABELVAG 45 68.213°N 14.482°E NOR 91 2 OULU / ULEABORG 79 65.04°N 25.418°E FIN 11 3 KEMI 229 65.673°N 24.515°E FIN 1 4 NARVIK 312 68.428°N 17.426°E NOR 81 5 LINAKHAMARI 365 69.65°N 31.367°E RUS 25 6 ANDENES 425 69.326°N 16.135°E NOR 41 7 BERLEVAG 442 70.85°N 29.1°E NOR 11 8 VARDO 524 70.375°N 31.104°E NOR 1 9 EVENSKJAER 531 68.583°N 16.55°E NOR 71 10 BARENTSBURG 541 78.067°N 14.25°E SJM 1 11 BARENTSBURG II (SPITSBERGEN) 547 78.067°N 14.25°E SJM 2 12 BODO 562 67.288°N 14.391°E NOR 101 13 TIKSI (TIKSI BUKHTA) 569 71.583°N 128.917°E RUS 447 14 AMDERMA 599 69.75°N 61.7°E RUS 310 15 UST KARA 600 69.25°N 64.517°E RUS 315 16 FEDOROVA (CHELUSKIN MYS) 601 77.717°N 104.3°E RUS 392 17 SANNIKOVA (SANNIKOVA PROLIV) 602 74.667°N 138.9°E RUS 480 18 SHALAUROVA (SHALAUROVA MYS) 603 73.183°N 143.233°E RUS 516 19 AMBARCHIK 604 69.617°N 162.3°E RUS 535 20 RAU-CHUA 605 69.5°N 166.583°E RUS 556 21 PEVEK 606 69.7°N 170.25°E RUS 567 22 VANKAREM 607 67.833°N 175.833°W RUS 630 23 VRANGELIA (VRANGELIA OSTROV) 608 70.983°N 178.483°W RUS 620 24 MALYE KARMAKULY 609 72.367°N 52.7°E RUS 16 25 UST OLENEK 610 73°N 119.867°E RUS 435 26 DIKSON 611 73.5°N 80.4°E RUS 345 27 STERLEGOVA (STERLEGOVA MYS) 612 75.417°N 88.9°E RUS 365 28 NETTEN 613 66.967°N 171.933°W RUS 650 29 PRAVDY (PRAVDY OSTROV) 615 76.267°N 94.767°E RUS 378 30 MYS SHMIDTA 616 68.9°N 179.367°W RUS 610 31 RATMANOVA 617 65.85°N 169.133°W RUS 670 32 MALYI TAIMYR (MALYI TAIMYR OSTROV) 620 78.083°N 106.817°E RUS 414 33 KOLUCHIN 621 67.483°N 174.65°W RUS 640 34 UGORSKII SHAR (UGORSKII SHAR PROLIV) 622 69.817°N 60.75°E RUS 308 35 DUNAI (DUNAI OSTROV) 640 73.933°N 124.5°E RUS 440 36 KOTELNYI (KOTELNYI OSTROV) 641 76°N 137.867°E RUS 475 37 KIGILIAH 642 73.333°N 139.867°E RUS 485 38 ANDREIA (ANDREIA OSTROV) 646 76.8°N 110.75°E RUS 410 39 ZHELANIA II (ZHELANIA MYS) 647 76.95°N 68.55°E RUS 321 40 GEIBERGA (GEIBERGA OSTROV) 648 77.6°N 101.517°E RUS 387 41 MUOSTAH ( MUOSTAH OSTROV) 649 71.55°N 130.033°E RUS 455 42 CHETYREHSTOLBOVOI 650 70.633°N 162.483°E RUS 550 43 BOLVANSKII NOS (FEDOROVA) 651 70.45°N 59.083°E RUS 305 44 PREOBRAZHENIA (PREOBRAZHENIA OSTROV) 652 74.667°N 112.933°E RUS 418 45 POPOVA (BELYI OSTROV) 653 73.333°N 70.05°E RUS 325 46 LESKINA (LESKINA MYS) 654 72.317°N 79.567°E RUS 340 47 RUSSKII (RUSSKII OSTROV) 655 77.167°N 96.433°E RUS 380 48 SOLNECHNAIA (SOLNECHNAIA BUKHTA) 656 78.2°N 103.267°E RUS 390 49 SVIATOI NOS (SVIATOI NOS MYS) 657 72.833°N 140.733°E RUS 397 50 ZEMLIA BUNGE 658 74.883°N 142.117°E RUS 510 51 MARII PRONCHISHEVOI (BUKHTA) 667 75.533°N 113.433°E RUS 420 52 TROMSO 680 69.647°N 18.961°E NOR 31 53 HARSTAD 681 68.801°N 16.548°E NOR 61 54 MURMANSK 684 68.967°N 33.05°E RUS 18 55 MURMANSK II 687 68.967°N 33.05°E RUS 19 56 VISE (VISE OSTROV) 704 79.5°N 76.983°E RUS 338 57 UEDINENIA (UEDINENIA OSTROV) 707 77.5°N 82.2°E RUS 348 58 BILLINGA 708 69.883°N 175.767°E RUS 578 59 UADEI 709 71.517°N 136.417°E RUS 468 60 RUSSKAIA GAVAN II 710 76.183°N 62.583°E RUS 3 61 RUSSKAYA GAVAN 711 76.2°N 62.583°E RUS 1 62 IZVESTIA TSIK (IZVESTIA TSIK OSTROVA) 728 75.95°N 82.95°E RUS 360 63 GOLOMIANYI (GOLOMIANYI OSTROV) 729 79.55°N 90.617°E RUS 374 64 AION 730 69.933°N 167.983°E RUS 560 65 MORZHOVAIA (HARASAVEI MYS) 732 71.417°N 67.583°E RUS 318 66 ISACHENKO (ISACHENKO OSTROV) 734 77.15°N 89.2°E RUS 370 67 BUORHAIA (BUORHAIA MYS) 735 71.95°N 132.767°E RUS 464 68 KOSYSTYI (KOSYSTYI MYS) 736 73.65°N 109.733°E RUS 394 69 KRASNOFLOTSKIE (KRASNOFLOTSKIE OSTROVA) 738 78.6°N 98.833°E RUS 385 70 MALYSHEVA (MALYSHEVA OSTROV) 741 72.067°N 129.833°E RUS 452 71 HAMMERFEST 758 70.665°N 23.683°E NOR 21 72 TADIBE-IAHA 767 70.367°N 72.567°E RUS 328 73 MOSJOEN 781 65.85°N 13.2°E NOR 121 74 TERPIAI-TUMSA 790 73.55°N 118.667°E RUS 430 75 VALKARKAI 792 70.083°N 170.933°E RUS 570 76 NEMKOVA (NEMKOVA OSTROV) 797 71.417°N 150.75°E RUS 521 77 BRONNOYSUND 803 65.483°N 12.217°E NOR 131 78 BELYI NOS 859 69.6°N 60.217°E RUS 7 79 RESOLUTE 863 74.683°N 94.883°W CAN 151 80 SOPOCHNAIA KARGA 917 71.867°N 82.7°E RUS 351 81 ZHOHOVA (ZHOHOVA OSTROV) 937 76.15°N 152.833°E RUS 528 82 TUKTOYAKTUK 1000 69.417°N 132.967°W CAN 211 83 PESCHANYI (PESCHANYI MYS) 1006 79.433°N 102.483°E RUS 405 84 KRENKELIA (HEISA OSTROV) 1012 80.617°N 58.05°E RUS 14 85 SAGYLLAH-ARY 1019 73.15°N 128.883°E RUS 443 86 ALERT 1110 82.49°N 62.32°W CAN 162 87 ANTIPAIUTA 1128 69.083°N 76.85°E RUS 335 88 CAMBRIDGE BAY 1132 69.117°N 105.067°W CAN 191 89 SANDNESSJOEN 1137 66.017°N 12.633°E NOR 117 90 SE-LAHA 1200 70.15°N 72.567°E RUS 331 91 VADSO 1257 70.067°N 29.75°E NOR 5 92 HONNINGSVAG 1267 70.98°N 25.973°E NOR 15 93 CAPE PARRY 1282 70.15°N 124.667°W CAN 201 94 BYKOV MYS (BYKOV MYS) 1399 72°N 129.117°E RUS 449 95 NY-ALESUND 1421 78.929°N 11.938°E SJM 21 96 NAIBA 1497 70.85°N 130.75°E RUS 460 97 ANABAR 1780 73.217°N 113.5°E RUS 425 98 LITTLE CORNWALLIS ISLAND 1822 75.383°N 96.95°W CAN 156 99 PRUDHOE BAY, ALASKA 1857 70.4°N 148.527°W USA 2 100 ULUKHAKTOK (FORMERLY HOLMAN ) 1930 70.736°N 117.761°W CAN 199 101 QIKIQTARJUAQ 1935 67.867°N 64.117°W CAN 135 102 BUGRINO 2025 68.8°N 49.333°E RUS 10 103 MYS PIKSHUEVA 2026 69.55°N 32.433°E RUS 30 104 POLYARNIY 2027 69.2°N 33.483°E RUS 20 105 TERIBERKA 2028 69.2°N 35.117°E RUS 23 106 KALIX 2101 65.697°N 23.096°E SWE 205 注:所属国家一栏中,RUS表示俄罗斯,NOR表示挪威,CAN表示加拿大,SJM表示斯瓦尔巴群岛和扬马延岛,USA表示美国,SWE表示瑞典。 -
[1] Proshutinsky A, Pavlov V, Bourke R H. Sea level rise in the Arctic Ocean[J]. Geophysical Research Letters, 2001, 28(11): 2237−2240. doi: 10.1029/2000GL012760 [2] Stammer D, Cazenave A, Ponte R M, et al. Causes for contemporary regional sea level changes[J]. Annual Review of Marine Science, 2013, 5(1): 21−46. doi: 10.1146/annurev-marine-121211-172406 [3] Griffies S M, Yin Jianjun, Durack P J, et al. An assessment of global and regional sea level for years 1993−2007 in a suite of interannual CORE-II simulations[J]. Ocean Modelling, 2014, 78: 35−89. doi: 10.1016/j.ocemod.2014.03.004 [4] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, USA: Cambridge University Press, 2013. [5] Rhein M, Rintoul S R, Aoki S, et al. Observations: Ocean Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 255−316. [6] Serreze M C, Barrett A P, Stroeve J C, et al. The emergence of surface-based Arctic amplification[J]. The Cryosphere, 2009, 3(1): 11−19. doi: 10.5194/tc-3-11-2009 [7] Serreze M C, Barry R G. Processes and impacts of Arctic amplification: a research synthesis[J]. Global and Planetary Change, 2011, 77(1/2): 85−96. [8] Shepherd A, Ivins E R, Geruo A, et al. A reconciled estimate of ice-sheet mass balance[J]. Science, 2012, 338(6111): 1183−1189. doi: 10.1126/science.1228102 [9] Velicogna I, Sutterley T C, Van Den Broeke M R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data[J]. Geophysical Research Letters, 2014, 41(22): 8130−8137. doi: 10.1002/2014GL061052 [10] Gardner A S, Moholdt G, Cogley J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013, 340(6134): 852−857. doi: 10.1126/science.1234532 [11] Kouraev A V, Papa F, Mognard N M, et al. Sea ice cover in the Caspian and Aral Seas from historical and satellite data[J]. Journal of Marine Systems, 2004, 47(1/4): 89−100. [12] Kwok R, Cunningham G F, Wensnahan M, et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003−2008[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7): C07005. [13] Comiso J C. Large decadal decline of the Arctic multiyear ice cover[J]. Journal of Climate, 2012, 25(4): 1176−1193. doi: 10.1175/JCLI-D-11-00113.1 [14] Cavalieri D J, Parkinson C L. Antarctic sea ice variability and trends, 1979−2006[J]. Journal of Geophysical Research: Oceans, 2008, 113(C7): C07004. [15] Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16): L16502. [16] Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4): 732−737. doi: 10.1002/grl.50193 [17] Proshutinsky A, Krishfield R, Timmermans M L, et al. Beaufort Gyre freshwater reservoir: state and variability from observations[J]. Journal of Geophysical Research: Oceans, 2009, 114(C1): C00A10. [18] McPhee M G, Proshutinsky A, Morison J H, et al. Rapid change in freshwater content of the Arctic Ocean[J]. Geophysical Research Letters, 2009, 36(10): L10602. doi: 10.1029/2009GL037525 [19] Rabe B, Karcher M, Schauer U, et al. An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006−2008 period[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58(2): 173−185. doi: 10.1016/j.dsr.2010.12.002 [20] Polyakov I V, Bhatt U S, Walsh J E, et al. Recent oceanic changes in the Arctic in the context of long-term observations[J]. Ecological Applications, 2013, 23(8): 1745−1764. doi: 10.1890/11-0902.1 [21] Haine T W N, Curry B, Gerdes R, et al. Arctic freshwater export: status, mechanisms, and prospects[J]. Global and Planetary Change, 2015, 125: 13−35. doi: 10.1016/j.gloplacha.2014.11.013 [22] Armitage T W K, Bacon S, Ridout A L, et al. Arctic Ocean surface geostrophic circulation 2003−2014[J]. The Cryosphere, 2017, 11(4): 1767−1780. doi: 10.5194/tc-11-1767-2017 [23] Armitage T W K, Bacon S, Kwok R. Arctic sea level and surface circulation response to the Arctic Oscillation[J]. Geophysical Research Letters, 2018, 45(13): 6576−6584. doi: 10.1029/2018GL078386 [24] Regan H C, Lique C, Armitage T W K. The Beaufort Gyre extent, shape, and location between 2003 and 2014 from satellite observations[J]. Journal of Geophysical Research: Oceans, 2019, 124(2): 844−862. doi: 10.1029/2018JC014379 [25] Manabe S, Stouffer R J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean[J]. Nature, 1995, 378(6553): 165−167. doi: 10.1038/378165a0 [26] Belkin I M. Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic[J]. Geophysical Research Letters, 2004, 31(8): L08306. [27] Proshutinsky A Y, Johnson M A. Two circulation regimes of the wind-driven Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 1997, 102(C6): 12493−12514. doi: 10.1029/97JC00738 [28] Henry O, Prandi P, Llovel W, et al. Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: contribution of the steric and mass components[J]. Journal of Geophysical Research: Oceans, 2012, 117(C6): C06023. [29] Holgate S J, Matthews A, Woodworth P L, et al. New data systems and products at the permanent service for mean sea level[J]. Journal of Coastal Research, 2013, 29(3): 493−504. [30] Koldunov N V, Serra N, Köhl A, et al. Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970−2009[J]. Journal of Geophysical Research: Oceans, 2014, 119(12): 8936−8954. doi: 10.1002/2014JC010170 [31] Prandi P, Ablain M, Cazenave A, et al. A new estimation of mean sea level in the Arctic Ocean from satellite altimetry[J]. Marine Geodesy, 2012, 35(S1): 61−81. [32] Cheng Yongcun, Andersen O, Knudsen P. An improved 20-year Arctic Ocean altimetric sea level data record[J]. Marine Geodesy, 2015, 38(2): 146−162. doi: 10.1080/01490419.2014.954087 [33] Armitage T W K, Bacon S, Ridout A L, et al. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003−2014[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 4303−4322. doi: 10.1002/2015JC011579 [34] Peacock N R, Laxon S W. Sea surface height determination in the Arctic Ocean from ERS altimetry[J]. Journal of Geophysical Research: Oceans, 2004, 109(C7): C07001. [35] Giles K A, Laxon S W, Ridout A L, et al. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre[J]. Nature Geoscience, 2012, 5(3): 194−197. doi: 10.1038/ngeo1379 [36] Proshutinsky A, Ashik I, Häkkinen S, et al. Sea level variability in the Arctic Ocean from AOMIP models[J]. Journal of Geophysical Research: Oceans, 2007, 112(C4): C04S08. [37] Farrell S L, McAdoo D C, Laxon S W, et al. Mean dynamic topography of the Arctic Ocean[J]. Geophysical Research Letters, 2012, 39(1): L01601. [38] Xiao Kai, Chen Meixiang, Wang Qiang, et al. Low-frequency sea level variability and impact of recent sea ice decline on the sea level trend in the Arctic Ocean from a high-resolution simulation[J]. Ocean Dynamics, 2020, 70(6): 787−802. doi: 10.1007/s10236-020-01373-5 [39] Peltier W R. Global sea level rise and glacial isostatic adjustment[J]. Global and Planetary Change, 1999, 20(2/3): 93−123. [40] Carret A, Johannessen J A, Andersen O B, et al. Arctic sea level during the satellite altimetry era[J]. Surveys in Geophysics, 2017, 38(1): 251−275. doi: 10.1007/s10712-016-9390-2 [41] Thompson D W J, Wallace J M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 1998, 25(9): 1297−1300. doi: 10.1029/98GL00950 [42] Wu Bingyi, Wang Jia, Walsh J E. Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion[J]. Journal of Climate, 2006, 19(2): 210−225. doi: 10.1175/JCLI3619.1 [43] Wang Qiang. Stronger variability in the Arctic Ocean induced by sea ice decline in a warming climate: Freshwater storage, dynamic sea level and surface circulation[J]. Journal of Geophysical Research: Oceans, 2021, 126(3): e2020JC016886. [44] Wang Jia, Ikeda M. Arctic Oscillation and Arctic sea-ice oscillation[J]. Geophysical Research Letters, 2000, 27(9): 1287−1290. doi: 10.1029/1999GL002389 [45] Morison J, Kwok R, Peralta-Ferriz C, et al. Changing Arctic ocean freshwater pathways[J]. Nature, 2012, 481(7379): 66−70. doi: 10.1038/nature10705 [46] Wang Qiang, Wekerle C, Danilov S, et al. Recent sea ice decline did not significantly increase the total liquid freshwater content of the Arctic Ocean[J]. Journal of Climate, 2019, 32(1): 15−32. doi: 10.1175/JCLI-D-18-0237.1 [47] Aagaard K, Carmack E C. The role of sea ice and other fresh water in the Arctic circulation[J]. Journal of Geophysical Research: Oceans, 1989, 94(C10): 14485−14498. doi: 10.1029/JC094iC10p14485 [48] Calafat F M, Chambers D P, Tsimplis M N. Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: the role of atmospheric forcing[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1287−1301. doi: 10.1002/jgrc.20106