留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于次溴酸钠氧化−氨基磺酸还原测定沉积物15N加富培养样品中的15${{\bf{NH}}}^{{\bf{+}}}_{{\bf 4}}$的方法探索

徐颢铭 宋国栋 刘素美 梁生康 张桂玲

徐颢铭,宋国栋,刘素美,等. 基于次溴酸钠氧化−氨基磺酸还原测定沉积物15N加富培养样品中的15\scriptsize${\rm{NH}}^+_4 $\normalsize的方法探索[J]. 海洋学报,2022,44(1):147–154 doi: 10.12284/hyxb2022024
引用本文: 徐颢铭,宋国栋,刘素美,等. 基于次溴酸钠氧化−氨基磺酸还原测定沉积物15N加富培养样品中的15\scriptsize${\rm{NH}}^+_4 $\normalsize的方法探索[J]. 海洋学报,2022,44(1):147–154 doi: 10.12284/hyxb2022024
Xu Haoming,Song Guodong,Liu Sumei, et al. A sodium hypobromite oxidation-sulfamic acid reduction method for determination of 15\scriptsize $ {\rm{NH_4^+}} $ \normalsize in 15N enrichment sediment slurry incubation samples[J]. Haiyang Xuebao,2022, 44(1):147–154 doi: 10.12284/hyxb2022024
Citation: Xu Haoming,Song Guodong,Liu Sumei, et al. A sodium hypobromite oxidation-sulfamic acid reduction method for determination of 15\scriptsize $ {\rm{NH_4^+}} $ \normalsize in 15N enrichment sediment slurry incubation samples[J]. Haiyang Xuebao,2022, 44(1):147–154 doi: 10.12284/hyxb2022024

基于次溴酸钠氧化−氨基磺酸还原测定沉积物15N加富培养样品中的15${{\bf{NH}}}^{{\bf{+}}}_{{\bf 4}}$的方法探索

doi: 10.12284/hyxb2022024
基金项目: 国家自然科学基金(42076035,U1806211,41606093);国家重点研发计划(2016YFA0601302);中国海洋大学中央高校基本科研业务(202072002)。
详细信息
    作者简介:

    徐颢铭(1998—),男,辽宁省沈阳市人,主要从事海洋生物地球化学研究。E-mail: richard980126@163.com

    通讯作者:

    宋国栋,男,副教授,主要从事海洋生物地球化学研究。E-mail: gsong@ouc.edu.cn

  • 中图分类号: P734.2+4

A sodium hypobromite oxidation-sulfamic acid reduction method for determination of 15$ {\bf{NH_4^+}}$ in 15N enrichment sediment slurry incubation samples

  • 摘要: 沉积物中的异化硝酸盐还原过程是海洋中活性氮转化的关键过程之一。不同于反硝化和厌氧铵氧化,异化硝酸盐还原为铵(DNRA)是将硝酸盐直接还原为铵,而不是以氮气的形态移除,这有可能会加重水体富营养化和缺氧。目前测定沉积物中异化硝酸盐还原过程的主要手段是15N标记培养技术。为了准确评估DNRA的潜在速率,首先要准确测定加富样品中的15${\rm {NH}}_4^+ $浓度。常用测定15${\rm {NH}}_4^+ $的方法为基于次溴酸钠−碘氧化膜进样的四极杆质谱法。然而此方法的分析物之一30N2在分析时容易存在两个问题而导致结果失真:一是易受样品中O2干扰而导致30N2含量被显著高估;二是30N2在检测器中平衡较慢从而导致测试时间较长且精密度较差。为解决上述问题,本研究采用次溴酸钠氧化−氨基磺酸还原的方法将15${\rm {NH}}_4^+ $转化为29N2后通过膜进样的四极杆质谱仪进行测定(简称Redox-MIMS法)。结果表明,Redox-MIMS法在氨基磺酸还原剂浓度为80~100 mmol/L时还原效率最好;方法的检测限约为0.5 μmol/L,精密度为0.8%,工作曲线的线性范围可以达到0~150 μmol/L。相对于次溴酸钠−碘氧化法,Redox-MIMS法反应条件温和,反应试剂相对易得,产物为29N2,有效解决了30N2分析的一系列问题,并显著提高了测定效率(2 min/样品)。分别采用Redox-MIMS法和次溴酸钠−碘氧化法测定莱州湾沉积物实际样品,两种方法所测得的DNRA速率以及DNRA占异化硝酸盐还原的比例均无显著性差异,证明Redox-MIMS法是一种准确、高效地测定15N加富培养样品中15${\rm {NH}}_4^+ $的方法。
  • 图  1  OX-MIMS法(a)和Redox-MIMS法(b)的操作流程

    Fig.  1  Procedures of OX-MIMS method (a) and Redox-MIMS method (b)

    图  2  沉积物采样站位

    Fig.  2  Sediment sampling stations

    图  3  氨基磺酸最佳浓度测试

    Fig.  3  Test for the optical concentration of sulfamic acid

    图  4  Redox-MIMS法标准曲线的线性范围

    Fig.  4  Linear range of standard curve using Redox-MIMS method

    图  5  OX-MIMS法(a)和Redox-MIMS法(b)测定产生29N230N2的比例

    Fig.  5  Ratios of 29N2 and 30N2 produced using OX-MIMS method (a) and Redox-MIMS method (b)

    图  6  OX-MIMS法(a)和Redox-MIMS法(b)测定的曲线

    Fig.  6  Detection curve using OX-MIMS method (a) and Redox-MIMS method (b)

    图  7  莱州湾H1-7、S5、H2-7站位沉积物不同15N加富培养体系中15N215$ {\rm{NH}}_4^+$浓度随时间变化

    a1−a3. 加富15$ {\rm{NO}}_3^-$,产生15N2; b1−b3. 加富15$ {\rm{NH}}_4^+$,产生15N2; c1−c3. 加富15$ {\rm{NH}}_4^+$+14$ {\rm{NO}}_3^-$,产生15N2; d1−d3. 加富15$ {\rm{NO}}_3^-$,产生15$ {\rm{NH}}_4^+$

    Fig.  7  15N2 and 15$ {\rm{NH}}_4^+$ concentration production with time changes in different 15N tracer enrichment incubation systems of sediments in stations H1-7, S5, H2-7 in the Laizhou Bay

    a1−a3. 15$ {\rm{NO}}_3^{-}$ enrichment with 15N2 produced; b1−b3. 15$ {\rm{NH}}_4^{+}$ enrichment with 15N2 produced; c1−c3. 15$ {\rm{NH}}_4^+$+14$ {\rm{NO}}_3^{-}$ enrichment with 15N2 produced; d1−d3. 15$ {\rm{NO}}_3^{-}$ enrichment with 15$ {\rm{NH}}_4^+$ produced

    图  8  各站位异化硝酸盐还原速率占比情况

    Fig.  8  Proportion of each dissimilatory nitrate reduction process in different stations

    图  9  采用两种方法测定的DNRA潜在速率以及xDNRA

    Fig.  9  Determination results of DNRA potential rates and xDNRA using two different methods

  • [1] Tiedje J M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium[M]//Zehnder A J B. Biology of Anaerobic Microorganisms. New York: John Wiley & Sons, Inc. , 1988: 179−244.
    [2] Devol A H. Denitrification, anammox, and N2 production in marine sediments[J]. Annual Review of Marine Science, 2015, 7: 403−423. doi: 10.1146/annurev-marine-010213-135040
    [3] Gardner W S, McCarthy M J, An S, et al. Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries[J]. Limnology and Oceanography, 2006, 51(1part2): 558−568. doi: 10.4319/lo.2006.51.1_part_2.0558
    [4] Giblin A E, Tobias C R, Song B, et al. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems[J]. Oceanography, 2013, 26(3): 124−131. doi: 10.5670/oceanog.2013.54
    [5] Smith C J, Dong L F, John W, et al. Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient[J]. Frontiers in Microbiology, 2015, 6: 542.
    [6] Song Guodong, Liu Sumei, Marchant H, et al. Anammox, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment[J]. Biogeosciences, 2013, 10(11): 6851−6864. doi: 10.5194/bg-10-6851-2013
    [7] Freyer H D. Seasonal trends of ${{\rm{NH}}_4^+} $ and ${{\rm{NO}}^-_3 }$ nitrogen isotope composition in rain collected at Jülich, Germany[J]. Tellus, 1978, 30(1): 83−92. doi: 10.3402/tellusa.v30i1.10319
    [8] Holmes R M, McClelland J W, Sigman D M, et al. Measuring 15 ${{\rm N}\text{-}{\rm{NH}}_4^+} $ in marine, estuarine and fresh waters: an adaptation of the ammonia diffusion method for samples with low ammonium concentrations[J]. Marine Chemistry, 1998, 60(3/4): 235−243.
    [9] Lehmann M F, Bernasconi S M, McKenzie J A. A method for the extraction of ammonium from freshwaters for nitrogen isotope analysis[J]. Analytical Chemistry, 2001, 73(19): 4717−4721. doi: 10.1021/ac010212u
    [10] Zhang Lin, Altabet M A, Wu Taixing, et al. Sensitive measurement of ${{\rm{NH}}_4^+} $ 15N/14N (δ15 ${{\rm{NH}}_4^+} $) at natural abundance levels in fresh and saltwaters[J]. Analytical Chemistry, 2007, 79(14): 5297−5303. doi: 10.1021/ac070106d
    [11] Felix J D, Elliott E M, Gish T J, et al. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach[J]. Rapid Communications in Mass Spectrometry, 2013, 27(20): 2239−2246. doi: 10.1002/rcm.6679
    [12] Liu Dongwei, Fang Yunting, Tu Ying, et al. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance[J]. Analytical Chemistry, 2014, 86(8): 3787−3792. doi: 10.1021/ac403756u
    [13] Yin Guoyu, Hou Lijun, Liu Min, et al. A novel membrane inlet mass spectrometer method to measure 15 ${{\rm{NH}}_4^+} $ for isotope-enrichment experiments in aquatic ecosystems[J]. Environmental Science & Technology, 2014, 48(16): 9555−9562.
    [14] Deng Fengyu, Hou Lijun, Liu Min, et al. Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(8): 1521−1531. doi: 10.1002/2015JG003007
    [15] Yin Guoyu, Hou Lijun, Liu Min, et al. DNRA in intertidal sediments of the Yangtze estuary[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(8): 1988−1998. doi: 10.1002/2017JG003766
    [16] 谢成军, 宋国栋, 刘素美, 等. 自组装膜进样质谱系统及其在砂质沉积物异化硝酸盐还原研究中的应用[J]. 海洋学报, 2020, 42(2): 22−29.

    Xie Chengjun, Song Guodong, Liu Sumei, et al. Self-assembled membrane injection mass spectrometry system and its application on the study of dissimilatory nitrate reduction in sandy sediments[J]. Haiyang Xuebao, 2020, 42(2): 22−29.
    [17] Jensen K M, Jensen M H, Cox R P. Membrane inlet mass spectrometric analysis of N-isotope labelling for aquatic denitrification studies[J]. FEMS Microbiology Ecology, 1996, 20(2): 101−109. doi: 10.1111/j.1574-6941.1996.tb00309.x
    [18] Lunstrum A, Aoki L R. Oxygen interference with membrane inlet mass spectrometry may overestimate denitrification rates calculated with the isotope pairing technique[J]. Limnology and Oceanography: Methods, 2016, 14(7): 425−431. doi: 10.1002/lom3.10101
    [19] Warembourg F R. Nitrogen fixation in soil and plant systems[M]//Knowles R, Blackburn T H. Nitrogen Isotope Techniques. New York, NY: Academic Press, Inc. , 1993: 127−156.
    [20] Füssel J, Lam P, Lavik G, et al. Nitrite oxidation in the Namibian oxygen minimum zone[J]. The ISME Journal, 2012, 6(6): 1200−1209. doi: 10.1038/ismej.2011.178
    [21] Granger J, Sigman D M. Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method[J]. Rapid Communications in Mass Spectrometry, 2009, 23(23): 3753−3762. doi: 10.1002/rcm.4307
    [22] Song Guodong, Liu Sumei, Kuypers M M M, et al. Application of the isotope pairing technique in sediments where anammox, denitrification, and dissimilatory nitrate reduction to ammonium coexist[J]. Limnology and Oceanography: Methods, 2016, 14(12): 801−815. doi: 10.1002/lom3.10127
    [23] 高凤鸣, 张淑华, 汪心源, 等. 用次溴酸钠氧化法测定海水中氨氮的研究[J]. 海洋湖沼通报, 1980(4): 41−47.

    Gao Fengming, Zhang Shuhua, Wang Xinyuan, et al. Study on the determination of ammonia-nitrogen in seawater with the sodium hypobromite oxidation method[J]. Transactions of Oceanography and Limnology, 1980(4): 41−47.
  • 加载中
图(10)
计量
  • 文章访问数:  490
  • HTML全文浏览量:  254
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-09-26
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回