Distribution and the internal hydrographic characteristics of eddies in the Scotia Sea, Antarctica
-
摘要: 南大洋涡旋在跨锋面物质热量输送方面具有重要作用,斯科舍海位于德雷克海峡东面,属于重要的经济渔区,因此针对斯科舍海的涡旋分布及其影响进行研究具有迫切意义。本文基于2005–2019年卫星遥感数据对斯科舍海涡旋进行了探测与追踪,并统计了涡旋半径、传播距离、生命周期等特征参数,分析涡旋的地理分布特点、涡旋跨锋面情况以及移动特性,同时结合剖面数据分析了该海域涡旋内部水文特性。结果显示,该海域近92%的涡旋均为生命周期小于30 d的短寿命涡旋,平均半径集中在10~30 km之间。涡旋产生地主要集中在斯科舍海中部的极锋(PF)、南极绕极流南锋(SACCF)和亚南极锋(SAF)附近水深为3 000~5 000 m的海域。受斯科舍海海底山脊的阻碍作用,涡动能(EKE)高值聚集在PF和SAF之间,并在2016年之后达到显著正异常。跨PF和SACCF锋面的涡旋中,低纬向涡旋数量占主导,其中以气旋式涡旋居多。在高纬向涡旋中反气旋式涡旋占主导。涡旋内部水文结构显示,冷涡内部次表层相对低温低盐,与高纬水团特征一致;暖涡内部次表层相对高温高盐。推测冷涡可能携带高纬海域水体向低纬移动,暖涡可能携带低纬海水向高纬移动。本研究为进一步理解斯科舍海涡旋特性及其在该海域物质能量运输上的作用研究提供了基础支撑。Abstract: Eddies in the Southern Ocean play a critical role in transporting material and heat across fronts. Scotia Sea is located downstream of the Drake Passage and is an important economic fishery area, hence study on the distribution and role of eddies in this region is of urgent importance. Based on satellite remote sensing data from 2005 to 2019, the characteristics of eddies are statistically calculated, including radius, propagation distance, and lifespan. Their spatial distribution, cross-front movement, and movement characteristics are also analyzed. Meanwhile, the internal hydrographic characteristics of eddies are analyzed based on profile data. Results show that about 92% of eddies have a lifespan shorter than 30 d, with an average radius between 10 km and 30 km. The generating location of eddies are mainly near Polar Front (PF), Southern ACC Front (SACCF), and Sub-antarctic Front (SAF), corresponding to the bottom depth ranging 3 000 m to 5 000 m. Large values of eddy kinetic energy (EKE) concentrate between PF and SAF due to the obstruction of the submarine ridges, and EKE reaches a significant positive anomaly after 2016. The number of equator-ward eddies is dominant in the eddies across PF and SACCF, with most being cyclonic eddies. Anticyclonic eddies are dominant in poleward eddies. The internal hydrographic structures of eddies show that temperature and salinity are relatively low in the subsurface layer of the cold eddies, consistent with the characteristics of water masses at high latitudes. While they are relatively high in the subsurface layer of the warm eddies. It suggests that cold eddies may carry water from high latitudes to low latitudes and warm eddies may carry seawater from low latitudes to high latitudes. This study provides a basis for further understanding of the characteristics of eddies in the Scotia Sea and their effects on the distribution of biological populations and material and energy transport.
-
Key words:
- Scotia Sea /
- ocean eddy /
- characteristic statistics /
- cross-frontal transport /
- vertical structure
-
图 1 研究区域地形(a),海表面高度(b)和海表面高度异常(c)
图中红色框中为斯科舍海范围;a中锋面数据来自于Orsi等[36],自北向南依次是SAF(亚南极锋)、PF(极锋)、SACCF(南极绕极流)和SB(南极绕极流南部边界),灰色等值线为4 000 m等深线;b和c分别为AVISO提供的2018年1月1日海表面高度和海表面高度异常分布
Fig. 1 Topography of the study area (a), sea surface height (b) and sea surface anomaly (c)
The range of Scotia Sea is shown in the red box; data of front is obtained from Orsi et al.[36] in a, fronts from north to south are SAF (Sub-antarctic Front), PF (Polar Front), SACCF (Southern Antarctic Circumpolar Current Front) and SB (Southern boundary) of Antarctic Circumpolar Current, the gray contour is 4 000 m isobath; b and c show sea surface height and sea surface anomaly on January 1, 2018 respectively, which are provided by AVISO
图 3 不同生命周期范围内涡旋产生地落在1o×0.5o网格内的比率分布
该比率通过产生地落在该网格内部的涡旋个数与所统计的寿命周期范围内涡旋的总个数之比获得。白色区域为没有相应生命周期涡旋产生的区域
Fig. 3 Ratio distribution of eddies generated in the 1o×0.5o grids corresponding to different lifespan ranges
The ratio is calculated as the ratio of the number of eddies originated in the grid and the total number of eddies for each statistical lifespan range. The white areas are those where no corresponding lifespan eddies are originated
图 5 2005–2019年平均涡动能(EKE)空间分布(a),白色等值线为4 000 m等深线;月平均EKE(黑线)及标准差范围(浅蓝色),年平均EKE以及标准差(红线)(b);基于日平均EKE时间序列的功率谱分析(c)
Fig. 5 The spatial distribution of mean eddy kinetic energy (EKE) from 2005 to 2019, white contours are 4 000 m isobaths (a); monthly mean EKE (black line) and one standard deviation range (light blue), annual-mean EKE and standard deviation (red line) (b); power spectrum of daily EKE time-series (c)
图 6 海表面高度异常(SLA)绝对值异常(a)和涡动能(EKE)异常(b)
异常的参考基准为2005–2019年之间15年的平均值,误差条表示年平均异常结果对应的标准差
Fig. 6 Anomaly of absolute sea level anomaly (SLA) (a) and eddy kinetic energy (EKE) (b)
The anomaly respect to the 15-year mean values during 2005–2019, error bars denoted the standard deviations for annually mean results
图 7 跨锋面涡旋的移动轨迹
a. 跨极锋(PF)和南极绕极流南锋(SACCF)的总涡旋移动轨迹;b. 跨PF的气旋(CE)相对移动轨迹;c. 跨PF的反气旋(AE)相对移动轨迹;d. 跨SACCF的气旋(CE)相对移动轨迹;e. 跨SACCF的反气旋(AE)相对移动轨迹
Fig. 7 Moving trajectories of cross-frontal eddies
a. Total eddy trajectories across Polar Front (PF) and Southern Antarctic Circumpolar Current Front (SACCF); b. the relative movement trajectories of CE across PF; c. the relative movement trajectories of AE across PF; d. the relative movement trajectories of CE across SACCF; e. the relative movement trajectories of AE across SACCF
图 8 两组同时期邻近气旋式和反气旋式涡旋内部温盐特性比较
A2涡旋盐度数据有误,故没有绘制。a和b中蓝色(红色)虚线为对应时间内气旋(反气旋)涡旋所处位置和形状,蓝色(红色)实线为气旋(反气旋)生命周期内的移动轨迹,蓝色(红色)五角星为气旋(反气旋)第1天出现的位置,黄色实心点为Argo浮标站点,黑色实线为锋面,自上而下分别为亚南极锋(SAF)、极锋(PF)和南极绕极流南锋(SACCF)
Fig. 8 Two groups of comparison of the potential temperature and salinity between adjacent cyclonic and anticyclonic eddies
Salinity of A2 is omitted due to bad data. The dotted lines in blue (red) in a and b are the positions and shapes of cyclonic (anticyclonic) eddies in the corresponding time, the solid blue (red) lines are the movement of the cyclone (anticyclonic) eddies during their life cycle, the blue (red) stars are the position of the cyclone (anticyclone) eddies on the first day, the yellow solid dots are the Argo stations. The solid black lines are the fronts, which are Sub-antarctic Front (SAF), Polar Front (PF) and Southern Antarctic Circumpolar Current Front (SACCF) from top to bottom
图 9 两个涡旋移动轨迹和CTD站点分布
蓝色箭头为地转流速异常分布;黑色实线为所研究涡旋的移动轨迹;蓝色五角星为涡旋产生时所处的位置;虚线为该涡旋在对应时间内所处的位置和形状;黑色实心点为当天的涡旋中心;a5和b5为CTD站点分布,其中红色实心点为断面站点,黄色实心点为所选择的背景场
Fig. 9 Movement trajectories of two eddies and CTD stations distribution
The blue arrows show the distribution of geostrophic velocity anomalies; the solid black lines show the trajectories of the studied eddies; the blue stars are the position of the eddy on the first day; the dotted lines are the positions and shapes of eddies in the corresponding time; black solid points indicate the eddy centers in the corresponding time; a5 and b5 are the distribution of the CTD stations, while red solid points are the section stations, and yellow solid points are the selected background field
图 10 2016年和2013年两个断面对应的海表面高度异常分布(a1,b1)、位温(θ)及其异常值(aθ)(a2,b2)、盐度(S)及其异常值(aS)(a3,b3)和位密(σθ)及其异常值(
$a_{\sigma_{\theta}} $ )(a4,b4)的垂直断面图断面图中等值线表示各自大小,背景颜色为它们的异常值
Fig. 10 Sea level anomaly distributions along the two sections obtained in 2016 (a1) and 2013 ( b1), the vertical section of potential temperature (θ) and their anomalies (a2, b2), salinity (S) and their anomalies (a3, b3) and potential density (σθ
) and their anomalies (a4, b4) The isolines being the values of θ, S and σθ while the background colors being the anomalies of potential temperature (aθ), salinity (aS), and potential density ($a_{\sigma_{\theta}} $)
表 1 2005–2019年斯科舍海涡旋生命周期、个数和对应平均半径、平均传播距离情况
Tab. 1 Lifespan, number of eddies, and the corresponded mean radius and propagation distance in the Scotia Sea from 2005 to 2019
生命周期/d 气旋式涡旋个数 反气旋式涡旋个数 平均半径/km 平均传播距离/km [2, 30) 17 624 16 579 24.93±9.6 31.43 [30, 80) 1 854 1 828 33.43±8.48 115.96 [80, 250) 185 220 36.62±7.74 241.39 注:平均半径中的误差部分显示一个标准差。 表 2 跨极锋(PF)和南极绕极流南锋(SACCF)两锋面涡旋个数统计
Tab. 2 The number of eddies crossing Polar Front (PF) and Southern Antarctic Circumpolar Current Front (SACCF)
锋面 高纬向移动 低纬向移动 总个数 CE个数 AE个数 CE个数 AE个数 PF 36 70 221 171 489 SACCF 177 210 280 266 933 -
[1] Frenger I, Münnich M, Gruber N, et al. Southern ocean eddy phenomenology[J]. Journal of Geophysical Research, 2015, 120(11): 7413−7449. [2] Abernathey R, Marshall J, Mazloff M, et al. Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean[J]. Journal of Physical Oceanography, 2010, 40(1): 170−184. doi: 10.1175/2009JPO4201.1 [3] Nikurashin M, Vallis G K, Adcroft A. Routes to energy dissipation for geostrophic flows in the Southern Ocean[J]. Nature Geoscience, 2013, 6(1): 48−51. doi: 10.1038/ngeo1657 [4] Muhling B A, Beckley L E, Olivar M P. Ichthyoplankton assemblage structure in two meso-scale Leeuwin Current eddies, eastern Indian Ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(8/11): 1113−1128. [5] Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences[J]. Deep-Sea Research and Oceanographic Abstracts, 1970, 17(3): 445−454. doi: 10.1016/0011-7471(70)90059-8 [6] Isern-Fontanet J, García-Ladona E, Font J. Vortices of the mediterranean sea: an altimetric perspective[J]. Journal of Physical Oceanography, 2006, 36(1): 87−103. doi: 10.1175/JPO2826.1 [7] Swart N C, Ansorge I J, Lutjeharms J R E. Detailed characterization of a cold Antarctic eddy[J]. Journal of Geophysical Research, 2008, 113(C1): C01009. [8] Ivanov Y A, Krasnopevtsev A Y, Morozov Y G, et al. A cyclonic frontal eddy in the Antarctic circumpolar current[J]. Oceanology, 1985, 25: 22−25. [9] Joyce T M, Patterson S L, Millard Jr R C. Anatomy of a cyclonic ring in the drake passage[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1981, 28(11): 1265−1287. doi: 10.1016/0198-0149(81)90034-0 [10] Jayne S R, Marotzke J. The oceanic eddy heat transport[J]. Journal of Physical Oceanography, 2002, 32(12): 3328−3345. doi: 10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2 [11] Trani M, Falco P, Zambianchi E. Near-surface eddy dynamics in the Southern Ocean[J]. Polar Research, 2011, 30: 11203. doi: 10.3402/polar.v30i0.11203 [12] Patel R S, Phillips H E, Strutton P G, et al. Meridional heat and salt transport across the subantarctic front by cold-core eddies[J]. Journal of Geophysical Research, 2019, 124(2): 981−1004. [13] Korb R E, Whitehouse M. Contrasting primary production regimes around South Georgia, Southern Ocean: large blooms versus high nutrient, low chlorophyll waters[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51(5): 721−738. doi: 10.1016/j.dsr.2004.02.006 [14] Bernard A T F, Ansorge I J, Froneman P W, et al. Entrainment of Antarctic euphausiids across the Antarctic Polar Front by a cold eddy[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54(10): 1841−1851. doi: 10.1016/j.dsr.2007.06.007 [15] Barker P F. Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation[J]. Earth-Science Reviews, 2001, 55(1/2): 1−39. [16] Morrow R, Donguy J R, Chaigneau A, et al. Cold-core anomalies at the Subantarctic front, south of Tasmania[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51(11): 1417−1440. doi: 10.1016/j.dsr.2004.07.005 [17] Korb R E, Whitehouse M J, Ward P. SeaWiFS in the Southern Ocean: spatial and temporal variability in phytoplankton biomass around South Georgia[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51(1/3): 99−116. [18] Ferrari R, Provost C, Park Y H, et al. Heat fluxes across the Antarctic circumpolar current in Drake Passage: mean flow and eddy contributions[J]. Journal of Geophysical Research, 2014, 119(9): 6381−6402. [19] Hill S L, Reid K, North A W. Recruitment of mackerel icefish (Champsocephalus gunnari) at South Georgia indicated by predator diets and its relationship with sea surface temperature[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(11): 2530−2537. doi: 10.1139/f05-157 [20] 刘慧, 朱国平. 近百年来南极磷虾分布冷热点的时空变动[J]. 应用生态学报, 2020, 31(3): 1015−1022.Liu Hui, Zhu Guoping. Spatial-temporal variation in hotspot and coldspot of Antarctic krill distribution in recent 100 years[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 1015−1022. [21] Kahru M, Mitchell B G, Gille S T, et al. Eddies enhance biological production in the Weddell-Scotia Confluence of the Southern Ocean[J]. Geophysical Research Letters, 2007, 34(14): L14603. doi: 10.1029/2007GL030430 [22] 崔伟, 王伟, 马毅, 等. 基于1993−2014年高度计数据的西北太平洋中尺度涡识别和特征分析[J]. 海洋学报, 2017, 39(2): 16−28.Cui Wei, Wang Wei, Ma Yi, et al. Identification and analysis of mesoscale eddies in the Northwestern Pacific Ocean from 1993−2014 based on altimetry data[J]. Haiyang Xuebao, 2017, 39(2): 16−28. [23] 胡冬, 陈希, 赵艳玲, 等. 两个西边界流延伸体区域中尺度涡统计特征分析[J]. 海洋学报, 2018, 40(6): 15−28.Hu Dong, Chen Xi, Zhao Yanling, et al. Statistical characteristics of mesoscale eddies in the two western boundary current extension regions[J]. Haiyang Xuebao, 2018, 40(6): 15−28. [24] 汤博, 侯一筠, 殷玉齐, 等. 北太平洋副热带逆流区中尺度涡旋的统计特征及其分布规律[J]. 海洋与湖沼, 2019, 50(5): 937−947. doi: 10.11693/hyhz20190300050Tang Bo, Hou Yijun, Yin Yuqi, et al. Statistical characteristics of mesoscale eddies and the distribution in the North Pacific subtropical countercurrent[J]. Oceanologia et Limnologia Sinica, 2019, 50(5): 937−947. doi: 10.11693/hyhz20190300050 [25] 胡松, 李敏华, 刘必林, 等. 黑潮延伸体区域叶绿素季节变化以及中尺度涡对其影响机制研究[J]. 海洋与湖沼, 2020, 51(6): 1370−1378. doi: 10.11693/hyhz20191100234Hu Song, Li Minhua, Liu Bilin, et al. Seasonal characteristics of Chlorophyll a concentration in Kuroshio extension and influences of mesoscale eddies[J]. Oceanologia et Limnologia Sinica, 2020, 51(6): 1370−1378. doi: 10.11693/hyhz20191100234 [26] 刘瑜, 郑全安, 李晓峰. 西北太平洋柔鱼渔场分布与涡动能变化的相关关系[J]. 海洋学报, 2020, 42(2): 44−51.Liu Yu, Zheng Quanan, Li Xiaofeng. Relationship between neon flying squid Ommastrephes bartramii fishery distribution patterns and eddy kinetic energy in Northwest Pacific Ocean[J]. Haiyang Xuebao, 2020, 42(2): 44−51. [27] 郑晓莉, 董庆, 樊星. 北太平洋中尺度涡海表温度和叶绿素浓度特征分析[J]. 遥感学报, 2020, 24(1): 85−96.Zheng Xiaoli, Dong Qing, Fan Xing. Characteristics of sea surface temperature and chlorophyll concentration inside mesoscale eddies in the North Pacific Ocean[J]. Journal of Remote Sensing, 2020, 24(1): 85−96. [28] 曾伟强, 张书文, 马永贵, 等. 1993−2017年南海中尺度涡特征分析[J]. 广东海洋大学学报, 2019, 39(5): 96−106.Zeng Weiqiang, Zhang Shuwen, Ma Yonggui, et al. Analysis of mesoscale eddy characteristics in the South China Sea from 1993 to 2017[J]. Journal of Guangdong Ocean University, 2019, 39(5): 96−106. [29] 祖永灿, 孙双文, 赵玮, 等. 南海中尺度涡上海面热通量异常的季节变化[J]. 海洋科学进展, 2019, 37(1): 11−21. doi: 10.3969/j.issn.1671-6647.2019.01.002Zu Yongcan, Sun Shuangwen, Zhao Wei, et al. Seasonal characteristics and mechanism of the sea surface heat fluxes associated with mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2019, 37(1): 11−21. doi: 10.3969/j.issn.1671-6647.2019.01.002 [30] 白志鹏, 韩君, 郭贤鹏, 等. 基于CORA2再分析数据的南海中尺度涡时空分布特征初步研究[J]. 海洋预报, 2020, 37(2): 73−83. doi: 10.11737/j.issn.1003-0239.2020.02.009Bai Zhipeng, Han Jun, Guo Xianpeng, et al. Spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea based on the CORA2 reanalysis data[J]. Marine Forecasts, 2020, 37(2): 73−83. doi: 10.11737/j.issn.1003-0239.2020.02.009 [31] Vaughan D G, Marshall G J, Connolley W M, et al. Recent rapid regional climate warming on the Antarctic peninsula[J]. Climatic Change, 2003, 60(3): 243−274. doi: 10.1023/A:1026021217991 [32] Nencioli F, Dong Changming, Dickey T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California Bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564−579. doi: 10.1175/2009JTECHO725.1 [33] 董昌明, 蒋星亮, 徐广珺, 等. 海洋涡旋自动探测几何方法、涡旋数据库及其应用[J]. 海洋科学进展, 2017, 35(4): 439−453. doi: 10.3969/j.issn.1671-6647.2017.04.001Dong Changming, Jiang Xingliang, Xu Guangjun, et al. Automated eddy detection using geometric approach, eddy datasets and their application[J]. Advances in Marine Science, 2017, 35(4): 439−453. doi: 10.3969/j.issn.1671-6647.2017.04.001 [34] 胡冬, 陈希, 毛科峰, 等. 南印度洋中尺度涡统计特征及三维合成结构研究[J]. 海洋学报, 2017, 39(9): 1−14.Hu Dong, Chen Xi, Mao Kefeng, et al. Statistical characteristics and composed three dimensional structures of mesoscale eddies in the South Indian Ocean[J]. Haiyang Xuebao, 2017, 39(9): 1−14. [35] Sun Wenjin, Dong Changming, Tan Wei, et al. Vertical structure anomalies of oceanic eddies and eddy-induced transports in the South China Sea[J]. Remote Sensing, 2018, 10(5): 795. doi: 10.3390/rs10050795 [36] Orsi A H, Whitworth III T, Nowlin Jr W D. On the meridional extent and fronts of the Antarctic circumpolar current[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(5): 641−673. doi: 10.1016/0967-0637(95)00021-W [37] 陈红霞, 林丽娜, 潘增弟. 南极绕极流研究进展综述[J]. 极地研究, 2017, 29(2): 183−193.Chen Hongxia, Lin Li’na, Pan Zengdi. An overview of Antarctic circumpolar current research[J]. Chinese Journal of Polar Research, 2017, 29(2): 183−193. [38] Moore J K, Abbott M R, Richman J G. Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data[J]. Journal of Geophysical Research, 1999, 104(C2): 3059−3073. doi: 10.1029/1998JC900032 [39] Schlosser E, Haumann F A, Raphael M N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay[J]. The Cryosphere, 2018, 12(3): 1103−1119. doi: 10.5194/tc-12-1103-2018 [40] Turner J, Phillips T, Marshall G J, et al. Unprecedented springtime retreat of Antarctic sea ice in 2016[J]. Geophysical Research Letters, 2017, 44(13): 6868−6875. doi: 10.1002/2017GL073656 [41] Armitage T W K, Bacon S, Ridout A L, et al. Arctic Ocean surface geostrophic circulation 2003–2014[J]. The Cryosphere, 2017, 11(4): 1767−1780. doi: 10.5194/tc-11-1767-2017 [42] 徐茗, 陈戈, 彭琳. 短生命周期海洋涡旋的时空分布特征[J]. 海洋学报, 2019, 41(9): 94−104.Xu Ming, Chen Ge, Peng Lin. Temporal and spatial properties of short-life oceanic eddies[J]. Haiyang Xuebao, 2019, 41(9): 94−104. [43] Carter L, McCave I N, Williams M J M. Chapter 4 circulation and water masses of the southern ocean: a review[J]. Developments in Earth and Environmental Sciences, 2008, 8: 85−114. [44] Ladd C, Mordy C W, Kachel N B, et al. Northern Gulf of Alaska eddies and associated anomalies[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54(4): 487−509. doi: 10.1016/j.dsr.2007.01.006 [45] Cotroneo Y, Budillon G, Fusco G, et al. Cold core eddies and fronts of the Antarctic circumpolar current south of New Zealand from in situ and satellite data[J]. Journal of Geophysical Research, 2013, 118(5): 2653−2666.