留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多接收电感耦合等离子体质谱仪测定沉积物中Cu和Zn同位素

何连花 刘季花 张颖 高晶晶 朱爱美 汪虹敏

何连花,刘季花,张颖,等. 多接收电感耦合等离子体质谱仪测定沉积物中Cu和Zn同位素[J]. 海洋学报,2022,44(3):70–80 doi: 10.12284/hyxb2022009
引用本文: 何连花,刘季花,张颖,等. 多接收电感耦合等离子体质谱仪测定沉积物中Cu和Zn同位素[J]. 海洋学报,2022,44(3):70–80 doi: 10.12284/hyxb2022009
He Lianhua,Liu Jihua,Zhang Ying , et al. Determination of Cu and Zn isotopes in sediments by multi-collector inductively coupled plasma mass spectrometer[J]. Haiyang Xuebao,2022, 44(3):70–80 doi: 10.12284/hyxb2022009
Citation: He Lianhua,Liu Jihua,Zhang Ying , et al. Determination of Cu and Zn isotopes in sediments by multi-collector inductively coupled plasma mass spectrometer[J]. Haiyang Xuebao,2022, 44(3):70–80 doi: 10.12284/hyxb2022009

多接收电感耦合等离子体质谱仪测定沉积物中Cu和Zn同位素

doi: 10.12284/hyxb2022009
基金项目: 山东省自然科学基金(ZR2014DP009);国际海域资源调查与开发“十三五”项目(DY135-N-1-03,DY135-S2-2-03)。
详细信息
    作者简介:

    何连花(1983—),女,广西壮族自治区来宾市人,主要从事地球化学研究。E-mail:helianhua@fio.org.cn

    通讯作者:

    刘季花(1965—),女,研究员,主要从事深海沉积物和大洋多金属矿产元素地球化学和同位素地球化学研究。E-mail: jihliu@fio.org.cn

  • 中图分类号: P736.21;O657.63

Determination of Cu and Zn isotopes in sediments by multi-collector inductively coupled plasma mass spectrometer

  • 摘要: 本文介绍了海洋沉积物中Cu和Zn同位素的化学预处理及测定方法,报道了冲绳海槽20件表层沉积物和5件柱状沉积物样品的Cu和Zn同位素组成。采用大孔径阴离子交换树脂AG MP-1M,分别以8.2 mol/L HCl+0.01%HF+0.001%H2O2、2 mol/L HCl+0.001%H2O2和0.5 mol/L HNO3作为淋洗液,能有效分离海洋沉积物中的基质元素和Cu、Zn元素,且Cu和Zn的回收率均接近100%。以内标法和标准−样品−标准法联合校正多接收电感耦合等离子体质谱仪的质量歧视,δ65Cu和δ66Zn的分析精度分别为0.11‰和0.09‰(2SD)。冲绳海槽表层沉积物δ66Zn分布范围为0.07‰~0.67‰,δ66Zn平均值为0.31‰±0.32‰(2SD);δ65Cu的分布范围为−2.26‰~−0.52‰,δ65Cu平均值为−1.21‰±0.55‰(2SD)。表层沉积物δ66Zn和δ65Cu分布范围较大,柱状沉积物样品δ66Zn和δ65Cu值随深度存在较显著变化。
  • 图  1  Cu、Zn与基质元素的化学分离淋洗曲线

    Fig.  1  Elution curve for Cu, Zn and matrix element separation

    图  2  IRMM3702 Zn、IRMM633 Cu混合溶液中加入不同浓度的GSB 单标元素Na、Mg、Fe对Cu同位素测定的影响

    误差棒为测试周期内样品的±2SE(n =100)

    Fig.  2  Plot of isotope rations of Na, Ma, Fe-dope Cu solutions relative to original lRMM3702 Zn and lRMM633 Cu mixture

    Error bars represent ±2 standard errors (n=100)

    图  3  IRMM3702 Zn、IRMM633 Cu混合溶液中加入不同浓度的GSB单标元素 Al、Cr、Fe对Zn同位素测定的影响

    误差棒为测试周期内样品的±2SE(n=100)

    Fig.  3  Plot of isotope ratios of Al, Cr, Fe-dope Zn solutions relative to original IRMM3702 Zn and IRMM633 Cu mixture

    Error bars represent ±2 standard errors (SE) for n=100 sample integrations

    图  4  IRMM3702 Zn 和IRMM633 Cu混合标准溶液单个测试周期内的斜率

    Fig.  4  Regression lines fitted through a mixed standard of IRMM3702 Zn and IRMM633 Cu during one single measurement session

    图  5  Y7柱样Cu和Zn同位素随深度的变化

    Fig.  5  Downcore variations of Cu and Zn isotope compositions at Site Y7

    表  1  化学分离流程

    Tab.  1  Chemical separation procedure

    色谱柱AG-MP-1M 树脂
    清洗树脂5 mL H2O
    平衡树脂4 mL 8.2 mol/L HCl
    上样1 mL 8.2 mol/L HCl
    淋洗基质元素5 mL 8.2 mol/L HCl + 0.001% H2O2
    淋洗并接收Cu20 mL 8.2 mol/L HCl + 0.01% HF + 0.001% H2O2
    淋洗并接收Fe15 mL 2 mol/L HCl + 0.001% H2O2
    淋洗基质元素2 mL 0.5 mol/L HNO3
    淋洗并接收Zn7 mL 0.5 mol/L HNO3
    下载: 导出CSV

    表  2  沉积物Cu、Zn回收率

    Tab.  2  Recovery of Cu and Zn in sediments

    样品Zn含量/(μg·g−1
    (过柱前)
    Zn含量/(μg·g−1
    (过柱后)
    Zn回收率/%Cu含量/(μg·g−1
    (过柱前)
    Cu含量/(μg·g−1
    (过柱后)
    Cu回收率/%
    S1146.13145.9899.941.7241.3999.2
    S2103.49101.9498.531.7131.6199.7
    S399.3898.7899.425.6525.5299.5
    S4156.90153.4597.843.9843.3298.5
    S5485.50483.0799.5205.04203.6099.3
    S688.1486.9998.722.8122.7299.6
    S795.8595.4799.622.5222.2598.8
    S895.2895.0999.832.2432.0599.4
    S9100.3699.2698.926.9726.4097.9
    S1092.6092.1499.525.1624.8398.7
    GBW07333114.15113.9299.829.2529.84102
    BHVO-2101.56100.1498.6126.62126.2499.7
    BCR-2126.36125.7399.518.9618.9299.8
      注:样品回收率重复次数n=3,标准物质GBW07333重复次数n=5,BHVO-2重复次数为n=4,BCR-2重复次数n=3,ICP-MS测定Cu、Zn含量的不确定度为±8%。
    下载: 导出CSV

    表  3  冲绳海槽表层沉积物Cu和Zn同位素组成

    Tab.  3  Cu and Zn isotopic compositions of the surface sediments in Okinawa Trough

    样品δ66ZnJMC-Lyon/‰2SD/‰δ65CuNIST976/‰2SD/‰
    Y7-3-4 0.57 0.06 –0.70 0.06
    Y7-9-10 0.51 0.08 –0.94 0.04
    Y7-9-10* 0.47 0.06 –0.99 0.06
    Y7-15-16 0.18 0.07 –0.46 0.05
    Y7-30-31 –0.04 0.07 –0.35 0.05
    Y7-51-52 0.53 0.05 –0.42 0.04
    S1 0.34 0.06 –0.95 0.06
    S2 0.10 0.04 –1.06 0.05
    S3 0.33 0.06 –0.85 0.07
    S4 0.07 0.04 –1.57 0.04
    S5 0.43 0.08 –1.44 0.05
    S6 0.32 0.07 –1.14 0.06
    S7 0.27 0.06 –0.63 0.04
    S8 0.47 0.06 –0.59 0.07
    S9 0.13 0.07 –0.64 0.05
    S9* 0.16 0.07 –0.60 0.06
    S10 0.29 0.06 –0.73 0.07
    S11 0.18 0.08 –0.87 0.05
    S12 0.39 0.09 –0.93 0.05
    S13 0.24 0.07 –2.26 0.05
    S14 0.44 0.06 –1.86 0.05
    S15 0.20 0.05 –2.14 0.09
    S16 0.14 0.08 –1.94 0.04
    S17 0.56 0.06 –1.69 0.06
    S18 0.39 0.09 –1.23 0.07
    S19 0.67 0.08 –0.52 0.06
    S20 0.48 0.07 –1.70 0.04
    标准物质a
    BHVO-2 0.32 0.06 0.11 0.03
    BHVO-2报道值 0.29±0.09 0.12±0.02
    BCR-2 0.25 0.07 0.15 0.04
    BCR-2报道值 0.33±0.09 0.17±0.05
      注:a 标准物质的Cu和Zn同位素做了多次重复测量,BHVO-2重复次数n=4,BCR-2重复次数n=3;*表示重复样。
    下载: 导出CSV
  • [1] Morel F M M, Price N M. The biogeochemical cycles of trace metals in the oceans[J]. Science, 2003, 300(5621): 944−947. doi: 10.1126/science.1083545
    [2] John S G, Kunzmann M, Townsend E J, et al. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 202−208. doi: 10.1016/j.palaeo.2016.11.003
    [3] Lü Yiwen, Liu Sheng’ao, Wu Huaichun, et al. Zn-Sr isotope records of the Ediacaran Doushantuo formation in South China: Diagenesis assessment and implications[J]. Geochimica et Cosmochimica Acta, 2018, 239: 330−345. doi: 10.1016/j.gca.2018.08.003
    [4] Navarrete J U, Borrok D M, Viveros M, et al. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 784−799. doi: 10.1016/j.gca.2010.11.011
    [5] John S G, Geis R W, Saito M A, et al. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica[J]. Limnology and Oceanography, 2007, 52(6): 2710−2714. doi: 10.4319/lo.2007.52.6.2710
    [6] Fru E C, Rodríguez N P, Partin C A, et al. Cu isotopes in marine black shales record the Great Oxidation Event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18): 4941−4946. doi: 10.1073/pnas.1523544113
    [7] Liu Pingping, Teng Fangzhen, Dick H J B, et al. Magnesium isotopic composition of the oceanic mantle and oceanic Mg cycling[J]. Geochimica et Cosmochimica Acta, 2017, 206: 151−165. doi: 10.1016/j.gca.2017.02.016
    [8] Sweere T C, Dickson A J, Jenkyns H C, et al. Isotopic evidence for changes in the zinc cycle during oceanic anoxic event 2 (Late Cretaceous)[J]. Geology, 2018, 46(5): 463−466. doi: 10.1130/G40226.1
    [9] Wang Xun, Liu Sheng’ao, Wang Zhengrong, et al. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 498: 68−82. doi: 10.1016/j.palaeo.2018.03.002
    [10] Fujii T, Moynier F, Dauphas N, et al. Theoretical and experimental investigation of nickel isotopic fractionation in species relevant to modern and ancient oceans[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 469−482. doi: 10.1016/j.gca.2010.11.003
    [11] Anbar A D, Rouxel O. Metal stable isotopes in paleoceanography[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 717−746. doi: 10.1146/annurev.earth.34.031405.125029
    [12] Little S H, Vance D, McManus J, et al. Copper isotope signatures in modern marine sediments[J]. Geochimica et Cosmochimica Acta, 2017, 212: 253−273. doi: 10.1016/j.gca.2017.06.019
    [13] Vance D, Archer C, Bermin J, et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 204−213.
    [14] Thompson C M, Ellwood M J, Wille M. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater[J]. Analytica Chimica Acta, 2013, 775: 106−113. doi: 10.1016/j.aca.2013.03.020
    [15] Boyle E A, John S, Abouchami W, et al. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration[J]. Limnology and Oceanography Methods, 2012, 10(9): 653−665. doi: 10.4319/lom.2012.10.653
    [16] Maréchal C N, Nicolas E, Douchet C, et al. Abundance of zinc isotopes as a marine biogeochemical tracer[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5): 1015.
    [17] Albarède F, Telouk P, Lamboux A, et al. Isotopic evidence of unaccounted for Fe and Cu erythropoietic pathways[J]. Metallomics, 2011, 3(9): 926−933. doi: 10.1039/c1mt00025j
    [18] Little S H, Vance D, Walker-Brown C, et al. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments[J]. Geochimica et Cosmochimica Acta, 2014, 125: 673−693. doi: 10.1016/j.gca.2013.07.046
    [19] Othman D B, Luck J M, Tchalikian A, et al. Cu-Zn isotope systematics in terrestrial basalts[J]. Geophysical Research Abstracts, 2003, 5: 09669.
    [20] Albarède F, Beard B. Analytical methods for non-traditional isotopes[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 113−152. doi: 10.2138/gsrmg.55.1.113
    [21] Mason T F D, Weiss D J, Horstwood M, et al. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry part 1. Spectral interferences and their correction[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(2): 209−217. doi: 10.1039/b306958c
    [22] Mason T F D, Weiss D J, Horstwood M, et al. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry part 2. Correcting for mass discrimination effects[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(2): 218−226. doi: 10.1039/b306953b
    [23] Maréchal C N, Télouk P, Albarède F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1/4): 251−273.
    [24] Archer C, Vance D. Mass discrimination correction in multiple-collector plasma source mass spectrometry: An example using Cu and Zn isotopes[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(5): 656−665. doi: 10.1039/b315853e
    [25] 侯可军, 李延河, 田有荣, 等. MC-ICP-MS高精度Cu、Zn同位素测试技术[J]. 矿床地质, 2008, 27(6): 774−781. doi: 10.3969/j.issn.0258-7106.2008.06.010

    Hou Kejun, Li Yanhe, Tian Yourong, et al. High precision Cu, Zn isotope measurements by multi-collector ICP-MS[J]. Mineral Deposits, 2008, 27(6): 774−781. doi: 10.3969/j.issn.0258-7106.2008.06.010
    [26] Luck J M, Othman D B, Albarède F. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes[J]. Geochimica et Cosmochimica Acta, 2005, 69(22): 5351−5363. doi: 10.1016/j.gca.2005.06.018
    [27] Chapman J B, Mason T F D, Weiss D J, et al. Chemical separation and isotopic variations of Cu and Zn from five geological reference materials[J]. Geostandards and Geoanalytical Research, 2006, 30(1): 5−16. doi: 10.1111/j.1751-908X.2006.tb00907.x
    [28] John S G, Rouxel O J, Craddock P R, et al. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys[J]. Earth and Planetary Science Letters, 2008, 269(1/2): 17−28.
    [29] Dong Shuofei, Weiss D J, Strekopytov S, et al. Stable isotope ratio measurements of Cu and Zn in mineral dust (bulk and size fractions) from the Taklimakan Desert and the Sahel and in aerosols from the eastern tropical North Atlantic Ocean[J]. Talanta, 2013, 114: 103−109. doi: 10.1016/j.talanta.2013.03.062
    [30] Zhu Zhiyong, Jiang Shaoyong, Yang Tao, et al. Improvements in Cu-Zn isotope analysis with MC-ICP-MS: A revisit of chemical purification, mass spectrometry measurement and mechanism of Cu/Zn mass bias decoupling effect[J]. International Journal of Mass Spectrometry, 2015, 393: 34−40. doi: 10.1016/j.ijms.2015.10.009
    [31] Araújo D F, Boaventura G R, Machado W, et al. Tracing of anthropogenic zinc sources in coastal environments using stable isotope composition[J]. Chemical Geology, 2017, 449: 226−235. doi: 10.1016/j.chemgeo.2016.12.004
    [32] Balistrieri L S, Borrok D M, Wanty R B, et al. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 311−328. doi: 10.1016/j.gca.2007.11.013
    [33] Moeller K, Schoenberg R, Pedersen R B, et al. Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations[J]. Geostandards and Geoanalytical Research, 2012, 36(2): 177−199. doi: 10.1111/j.1751-908X.2011.00153.x
    [34] 李世珍, 朱祥坤, 唐索寒, 等. 多接收器等离子体质谱法Zn同位素比值的高精度测定[J]. 岩石矿物学杂志, 2008, 27(4): 273−278. doi: 10.3969/j.issn.1000-6524.2008.04.002

    Li Shizhen, Zhu Xiangkun, Tang Suohan, et al. The application of MC-ICP-MS to high-precision measurement of Zn isotope ratios[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 273−278. doi: 10.3969/j.issn.1000-6524.2008.04.002
    [35] 唐索寒, 朱祥坤, 蔡俊军, 等. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法[J]. 岩矿测试, 2006, 25(1): 5−8. doi: 10.3969/j.issn.0254-5357.2006.01.002

    Tang Suohan, Zhu Xiangkun, Cai Junjun, et al. Chromatographic separation of Cu, Fe and Zn using AG MP-1 anion exchange resin for isotope determination by MC-ICPMS[J]. Rock and Mineral Analysis, 2006, 25(1): 5−8. doi: 10.3969/j.issn.0254-5357.2006.01.002
    [36] Gao Jingjing, Liu Jihua, Li Xianguo, et al. The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method[J]. Acta Oceanologica Sinica, 2017, 36(1): 109−117. doi: 10.1007/s13131-017-0991-5
    [37] Bermin J, Vance D, Archer C, et al. The determination of the isotopic composition of Cu and Zn in seawater[J]. Chemical Geology, 2006, 226(3/4): 280−297.
    [38] Peel K, Weiss D, Chapman J, et al. A simple combined sample-standard bracketing and inter-element correction procedure for accurate mass bias correction and precise Zn and Cu isotope ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(1): 103−110. doi: 10.1039/B710977F
    [39] Souto-Oliveira C E, Babinski M, Araújo D F, et al. Multi-isotope approach of Pb, Cu and Zn in urban aerosols and anthropogenic sources improves tracing of the atmospheric pollutant sources in megacities[J]. Atmospheric Environment, 2019, 198: 427−437. doi: 10.1016/j.atmosenv.2018.11.007
    [40] Zhu X K, O’Nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers[J]. Chemical Geology, 2000, 163(1/4): 139−149.
    [41] Araújo D F, Ponzevera E, Briant N, et al. Assessment of the metal contamination evolution in the Loire estuary using Cu and Zn stable isotopes and geochemical data in sediments[J]. Marine Pollution Bulletin, 2019, 143: 12−23. doi: 10.1016/j.marpolbul.2019.04.034
    [42] Kříbek B, Míková J, Knésl I, et al. Uptake of trace elements and isotope fractionation of Cu and Zn by birch (Betula pendula) growing on mineralized coal waste pile[J]. Applied Geochemistry, 2020, 122: 104741. doi: 10.1016/j.apgeochem.2020.104741
    [43] Liang Lili, Liu Congqiang, Zhu Xiangkun, et al. Zinc isotope characteristics in the biogeochemical cycle as revealed by analysis of suspended particulate matter (SPM) in Aha Lake and Hongfeng Lake, Guizhou, China[J]. Journal of Earth Science, 2020, 31(1): 126−140. doi: 10.1007/s12583-017-0957-8
    [44] Moynier F, Vance D, Fujii T, et al. The isotope geochemistry of Zinc and Copper[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 543−600. doi: 10.2138/rmg.2017.82.13
    [45] 朱爱美, 石学法, 邹建军, 等. 88 ka以来冲绳海槽北部古环境演化: 来自元素地球化学的证据[J]. 海洋学报, 2015, 37(6): 58−69.

    Zhu Aimei, Shi Xuefa, Zou Jianjun, et al. Paleoenvironment changes in the northern Okinawa Trough since 88 ka: Evidences from element geochemistry[J]. Haiyang Xuebao, 2015, 37(6): 58−69.
    [46] 赵德博, 万世明. 冲绳海槽沉积物物源示踪研究进展[J]. 海洋地质前沿, 2015, 31(2): 32−41.

    Zhao Debo, Wan Shiming. Research progress of tracing sediment sources in Okinawa Trough[J]. Marine Geology Frontiers, 2015, 31(2): 32−41.
    [47] Zheng Zhuo, Yang Shixiong, Deng Yun, et al. Pollen record of the past 60 ka BP in the Middle Okinawa Trough: Terrestrial provenance and reconstruction of the paleoenvironment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1/4): 285−300.
    [48] Xu Hongyan, Chang Fengming, Luo Yunli, et al. Palaeoenvironmental changes from pollen record in deep sea core PC-1 from northern Okinawa Trough, East China Sea during the past 24 ka[J]. Chinese Science Bulletin, 2009, 54(20): 3739−3748. doi: 10.1007/s11434-009-0227-y
    [49] Dou Yanguang, Yang Shouye, Liu Zhenxia, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: Constraints from rare earth element compositions[J]. Marine Geology, 2010, 275(1/4): 212−220.
    [50] Kubota Y, Kimoto K, Tada R, et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea[J]. Paleoceanography, 2010, 25(4): PA4205.
    [51] Mathur R, Titley S, Barra F, et al. Exploration potential of Cu isotope fractionation in porphyry copper deposits[J]. Journal of Geochemical Exploration, 2009, 102(1): 1−6. doi: 10.1016/j.gexplo.2008.09.004
    [52] Santschi P, Höhener P, Benoit G, et al. Chemical processes at the sediment-water interface[J]. Marine Chemistry, 1990, 30: 269−315. doi: 10.1016/0304-4203(90)90076-O
    [53] Bentahila Y, Othman D B, Luck J M. Strontium, lead and zinc isotopes in marine cores as tracers of sedimentary provenance: A case study around Taiwan orogen[J]. Chemical Geology, 2008, 248(1/2): 62−82.
    [54] John S G. The marine biogeochemistry of zinc isotopes[D]. Cambridge: Massachusetts Institute of Technology, 2007.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  219
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 修回日期:  2021-06-04
  • 刊出日期:  2022-03-18

目录

    /

    返回文章
    返回