An iterative retrieval algorithm of ocean surface current based on SAR Doppler centroid anomaly
-
摘要: 为了克服SAR多普勒质心频移法反演海面流场时风场贡献去除困难的难题,本文提出了基于M4S模型的弦截下山法,利用其迭代计算局部区域的海面流场;然后估算整幅SAR图像中风场对多普勒速度的风贡献因子
$\gamma $ ;最后去除风场对多普勒速度的贡献。将该算法用于Radarsat-2数据反演海面径向流速,并利用匹配的实测数据验证反演精度。研究结果表明,本文提出的弦截下山法具有良好的收敛性和较高的收敛速度,而且对本文中使用的两景SAR数据,反演的海面径向流速偏差分别为0.04 m/s和0.15 m/s。Abstract: To overcome the difficulty of removing the wind field contribution in the SAR Doppler centroid anomaly method when retrieving the ocean surface current, in this paper, a secant downhill method based on the M4S model is proposed. The contribution of the wind field is removed by iteratively calculating the sea surface current field in a local area and subsequently estimating the wind contribution factor to the Doppler velocity of the whole SAR map. Our method is used to retrieve the radial velocity of sea surface from Radarsat-2 data. Its retrieval accuracy is verified by matching measured data. The results show that the proposed method not only can possess well convergence and high convergent speed, but also the deviation of the radial velocity of the surface is 0.04 m/s and 0.15 m/s respectively for two scene SAR data used in this paper.-
Key words:
- SAR /
- Doppler centroid anomaly /
- ocean surface current /
- secant downhill method
-
图 3 2019年6月23日SAR图像反演结果
a. 实测多普勒中心频率fDc;b. 预测多普勒中心频率fDp;c. 多普勒质心频率异常值fDca;d. 地距多普勒速度Vdop_sar,其中红框区域为利用弦截下山法迭代反演流场的局部区域
Fig. 3 SAR image retrieval results on June 23, 2019
a. Measured Doppler center frequency fDc; b. predicted Doppler center frequency fDp; c. Doppler centroid frequency anomaly fDca; d. ground Doppler velocity Vdop_sar, the red box area is the local area of the current field iteratively retrieved by the secant downhill method
表 1 本文所用Radarsat-2 SAR数据信息
Tab. 1 Radarsat-2 SAR data information used in this paper
成像时间(UTC) 幅宽/km 分辨率/m 入射角范围/(°) 极化方式 升、降轨模式 2019年6月23日21时53分 102.52×109.43 4.92×11.83 41.45~46.70 垂直极化(VV) 降轨 2019年6月25日10时11分 102.91×109.93 5.04×11.83 33.51~39.74 垂直极化(VV) 升轨 表 2 海流计实测海流数据
Tab. 2 Current data measured by ocean current meters
测量时间(UTC) 位置 平均流速/(m·s–1) 平均流向/(°) 实测数据在SAR视向方向的分量/(m·s–1) 2019年6月23日21时48–58分 21.30°N,118.51°E 0.42 336.70 0.23 2019年6月25日10时6–16分 21.80°N,118.29°E 0.15 283.90 –0.14 -
[1] 刘巍, 张韧, 王辉赞, 等. 基于卫星遥感资料的海洋表层流场反演与估算[J]. 地球物理学进展, 2012, 27(5): 1989−1994. doi: 10.6038/j.issn.1004-2903.2012.05.020Liu Wei, Zhang Ren, Wang Huizan, et al. Sea surface flow field retrieval and estimation based on satellite remote sensing data[J]. Progress in Geophysics, 2012, 27(5): 1989−1994. doi: 10.6038/j.issn.1004-2903.2012.05.020 [2] 蒋兴伟, 林明森, 张有广. 中国海洋卫星及应用进展[J]. 遥感学报, 2016, 20(5): 1185−1198.Jiang Xingwei, Lin Mingsen, Zhang Youguang. Progress and prospect of Chinese ocean satellites[J]. Journal of Remote Sensing, 2016, 20(5): 1185−1198. [3] Emery W J, Fowler C, Clayson C A. Satellite-image-derived Gulf Stream currents compared with numerical model results[J]. Journal of Atmospheric and Oceanic Technology, 1992, 9(3): 286−304. doi: 10.1175/1520-0426(1992)009<0286:SIDGSC>2.0.CO;2 [4] 毛志华, 潘德炉, 潘玉球, 等. 利用卫星遥感SST估算海表流场[J]. 海洋通报, 1996, 15(1): 84−90.Mao Zhihua, Pan Delu, Pan Yuqiu, et al. Methods of obtaining sea surface velocities field from SST images[J]. Marine Science Bulletin, 1996, 15(1): 84−90. [5] Emery W J, Baldwin D G, Matthews D K. Sampling the mesoscale ocean surface currents with various satellite altimeter configurations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 795−803. doi: 10.1109/TGRS.2003.820599 [6] 吴雄斌, 杨绍麟, 程丰, 等. 高频地波雷达东海海洋表面矢量流探测试验[J]. 地球物理学报, 2003, 46(3): 340−346. doi: 10.3321/j.issn:0001-5733.2003.03.010Wu Xiongbin, Yang Shaolin, Cheng Feng, et al. Ocean surface currents detection at the eastern China sea by HF surface wave radar[J]. Chinese Journal of Geophysics, 2003, 46(3): 340−346. doi: 10.3321/j.issn:0001-5733.2003.03.010 [7] 杨春奇. 高频地波雷达海洋回波提取及海态参数反演方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.Yang Chunqi. Research on wave echo extraction and high frequency ground wave radar sea-state parameters inversion method[D]. Harbin: Harbin Institute of Technology, 2019. [8] Bao Qingliu, Dong Xiaolong, Zhu Di, et al. The feasibility of ocean surface current measurement using pencil-beam rotating scatterometer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3441−3451. doi: 10.1109/JSTARS.2015.2414451 [9] Bao Qingliu, Lin Mingsen, Zhang Youguang, et al. Ocean surface current inversion method for a Doppler scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6505−6516. doi: 10.1109/TGRS.2017.2728824 [10] Rodríguez E, Wineteer A, Perkovic-Martin D, et al. Estimating ocean vector winds and currents using a Ka-band pencil-beam Doppler scatterometer[J]. Remote Sensing, 2018, 10(4): 576. doi: 10.3390/rs10040576 [11] Rodríguez E, Wineteer A, Perkovic-Martin D, et al. Ka-band Doppler scatterometry over a loop current eddy[J]. Remote Sensing, 2020, 12(15): 2388. doi: 10.3390/rs12152388 [12] 候富城, 孟俊敏, 张晰, 等. 利用多普勒频移反演ASAR海表面流速[J]. 海洋科学进展, 2019, 37(2): 274−283. doi: 10.3969/j.issn.1671-6647.2019.02.011Hou Fucheng, Meng Junmin, Zhang Xi, et al. Using the Doppler shift method to retrieve the ASAR sea surface velocity[J]. Advances in Marine Science, 2019, 37(2): 274−283. doi: 10.3969/j.issn.1671-6647.2019.02.011 [13] 何宜军, 杨小波, 矣娜, 等. 星载SAR测量海洋流场研究进展[J]. 南京信息工程大学学报(自然科学版), 2020, 12(2): 181−190.He Yijun, Yang Xiaobo, Yi Na, et al. Progress in sea surface current retrieval from spaceborne SAR measurements[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2020, 12(2): 181−190. [14] Liu Bochang, He Yijun, Li Xiuzhong. A new concept of full ocean current vector retrieval with spaceborne SAR based on intrapulse beam-switching technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 7682−7704. doi: 10.1109/TGRS.2020.2983178 [15] Johannessen J A, Chapron B, Collard F, et al. Direct ocean surface velocity measurements from space: Improved quantitative interpretation of Envisat ASAR observations[J]. Geophysical Research Letters, 2008, 35(22): L22608. doi: 10.1029/2008GL035709 [16] Wang Lihua, Zhou Yunxuan, Ge Jianzhong, et al. Mapping sea surface velocities in the Changjiang coastal zone with advanced synthetic aperture radar[J]. Acta Oceanologica Sinica, 2014, 33(11): 141−149. doi: 10.1007/s13131-014-0563-x [17] Goldstein R M, Zebker H A. Interferometric radar measurement of ocean surface currents[J]. Nature, 1987, 328(6132): 707−709. doi: 10.1038/328707a0 [18] Kim J E, Kim D J, Moon W M. Enhancement of Doppler centroid for ocean surface current retrieval from ERS-1/2 raw SAR[C]// IEEE International Geoscience & Remote Sensing Symposium. Washington DC: IEEE, 2004, 5(20–24): 3118–3120. [19] Collard F, Mouche A, Chapron B, et al. Routine high resolution observation of selected major surface currents from space[C]//Proceedings of the SeaSAR 2008. Noordwijk, Netherlands: ESA Communication Production Office, 2008, SP-656. [20] Moiseev A, Johnsen H, Hansen M W, et al. Evaluation of radial ocean surface currents derived from Sentinel-1 IW Doppler shift using coastal radar and Lagrangian surface drifter observations[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2019JC015743. [21] Chapron B, Collard F, Kerbaol V. Satellite synthetic aperture radar sea surface Doppler measurements[C]//Proceeding of the 2nd Workshop on Coastal and Marine Applications of SAR. Noordwijk, Netherlands: ESA Special Publication, 2004, 565: 133–139. [22] Romeiser R, Runge H, Suchandt S, et al. Quality assessment of surface current fields from TerraSAR-X and TanDEM-X along-track interferometry and Doppler centroid analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2759−2772. doi: 10.1109/TGRS.2013.2265659 [23] Chapron B, Collard F, Ardhuin F. Direct measurements of ocean surface velocity from space: Interpretation and validation[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07008. [24] 杨小波. 基于ASAR的时变海表面流场反演研究[D]. 上海: 上海海洋大学, 2016.Yang Xiaobo. Sea surface current retrieval based on ASAR data[D]. Shanghai: Shanghai Ocean University, 2016. [25] Romeiser R, Alpers W, Wismann V. An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data[J]. Journal of Geophysical Research: Oceans, 1997, 102(C11): 25237−25250. doi: 10.1029/97JC00190 [26] Cumming I G, Wong F H. 合成孔径雷达成像: 算法与实现[M]. 洪文, 胡东辉, 译. 北京: 电子工业出版社, 2012.Cumming I G, Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Hongwen, Hu Donghui, trans. Beijing: Publishing House of Electronics Industry, 2012. [27] 任圣君, 陈少昌. 基于相位增量法的合成孔径雷达多普勒中心频率估计[J]. 微型机与应用, 2017, 36(21): 81−84,89.Ren Shengjun, Chen Shaochang. Doppler center frequency estimation of synthetic aperture radar based on phase increment method[J]. Microcomputer & its Applications, 2017, 36(21): 81−84,89. [28] 王绍清. 星载SAR多普勒中心实时估计技术研究[D]. 北京: 中国科学院电子学研究所, 2005.Wang Shaoqing. Research on the Doppler centroid real-time estimation technology of space-borne SAR[D]. Beijing: Institute of Electrics, Chinese Academy of Sciences, 2005. [29] Raney R K. Doppler properties of radars in circular orbits[J]. International Journal of Remote Sensing, 1986, 7(9): 1153−1162. doi: 10.1080/01431168608948916 [30] Hansen M W, Collard F, Dagestad K F, et al. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3582−3592. doi: 10.1109/TGRS.2011.2153864 [31] 李庆扬, 王能超, 易大义. 数值分析[M]. 4版. 武汉: 华中科技大学出版社, 2006: 222-230.Li Qingyang, Wang Nengchao, Yi Dayi. Numerical Analysis[M]. 4th ed. Wuhan: Huazhong University of Science & Technology Press, 2006: 222−230.